时变自回归模型:一种使用物理信息神经网络的新方法。

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-09-04 DOI:10.3390/e27090934
Zhixuan Jia, Chengcheng Zhang
{"title":"时变自回归模型:一种使用物理信息神经网络的新方法。","authors":"Zhixuan Jia, Chengcheng Zhang","doi":"10.3390/e27090934","DOIUrl":null,"url":null,"abstract":"<p><p>Time series models are widely used to examine temporal dynamics and uncover patterns across diverse fields. A commonly employed approach for modeling such data is the (Vector) Autoregressive (AR/VAR) model, in which each variable is represented as a linear combination of its own and others' lagged values. However, the traditional (V)AR framework relies on the key assumption of stationarity, that autoregressive coefficients remain constant over time, which is often violated in practice, especially in systems affected by structural breaks, seasonal fluctuations, or evolving causal mechanisms. To overcome this limitation, Time-Varying (Vector) Autoregressive (TV-AR/TV-VAR) models have been developed, enabling model parameters to evolve over time and thus better capturing non-stationary behavior. Conventional approaches to estimating such models, including generalized additive modeling and kernel smoothing techniques, often require strong assumptions about basis functions, which can restrict their flexibility and applicability. To address these challenges, we introduce a novel framework that leverages physics-informed neural networks (PINN) to model TV-AR/TV-VAR processes. The proposed method extends the PINN framework to time series analysis by reducing reliance on explicitly defined physical structures, thereby broadening its applicability. Its effectiveness is validated through simulations on synthetic data and an empirical study of real-world health-related time series.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468550/pdf/","citationCount":"0","resultStr":"{\"title\":\"Time-Varying Autoregressive Models: A Novel Approach Using Physics-Informed Neural Networks.\",\"authors\":\"Zhixuan Jia, Chengcheng Zhang\",\"doi\":\"10.3390/e27090934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Time series models are widely used to examine temporal dynamics and uncover patterns across diverse fields. A commonly employed approach for modeling such data is the (Vector) Autoregressive (AR/VAR) model, in which each variable is represented as a linear combination of its own and others' lagged values. However, the traditional (V)AR framework relies on the key assumption of stationarity, that autoregressive coefficients remain constant over time, which is often violated in practice, especially in systems affected by structural breaks, seasonal fluctuations, or evolving causal mechanisms. To overcome this limitation, Time-Varying (Vector) Autoregressive (TV-AR/TV-VAR) models have been developed, enabling model parameters to evolve over time and thus better capturing non-stationary behavior. Conventional approaches to estimating such models, including generalized additive modeling and kernel smoothing techniques, often require strong assumptions about basis functions, which can restrict their flexibility and applicability. To address these challenges, we introduce a novel framework that leverages physics-informed neural networks (PINN) to model TV-AR/TV-VAR processes. The proposed method extends the PINN framework to time series analysis by reducing reliance on explicitly defined physical structures, thereby broadening its applicability. Its effectiveness is validated through simulations on synthetic data and an empirical study of real-world health-related time series.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468550/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090934\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090934","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

时间序列模型被广泛用于研究时间动态和揭示不同领域的模式。对此类数据建模的一种常用方法是(向量)自回归(AR/VAR)模型,其中每个变量都表示为其自身和其他滞后值的线性组合。然而,传统的(V)AR框架依赖于平稳性的关键假设,即自回归系数随时间保持恒定,这在实践中经常被违反,特别是在受结构断裂、季节波动或不断演变的因果机制影响的系统中。为了克服这一限制,开发了时变(矢量)自回归(TV-AR/TV-VAR)模型,使模型参数能够随时间演变,从而更好地捕捉非平稳行为。估计这类模型的传统方法,包括广义加性建模和核平滑技术,通常需要对基函数有很强的假设,这限制了它们的灵活性和适用性。为了应对这些挑战,我们引入了一个新的框架,利用物理信息神经网络(PINN)来模拟TV-AR/TV-VAR过程。提出的方法通过减少对明确定义的物理结构的依赖,将PINN框架扩展到时间序列分析,从而扩大了其适用性。通过对合成数据的模拟和对现实世界健康相关时间序列的实证研究,验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Varying Autoregressive Models: A Novel Approach Using Physics-Informed Neural Networks.

Time series models are widely used to examine temporal dynamics and uncover patterns across diverse fields. A commonly employed approach for modeling such data is the (Vector) Autoregressive (AR/VAR) model, in which each variable is represented as a linear combination of its own and others' lagged values. However, the traditional (V)AR framework relies on the key assumption of stationarity, that autoregressive coefficients remain constant over time, which is often violated in practice, especially in systems affected by structural breaks, seasonal fluctuations, or evolving causal mechanisms. To overcome this limitation, Time-Varying (Vector) Autoregressive (TV-AR/TV-VAR) models have been developed, enabling model parameters to evolve over time and thus better capturing non-stationary behavior. Conventional approaches to estimating such models, including generalized additive modeling and kernel smoothing techniques, often require strong assumptions about basis functions, which can restrict their flexibility and applicability. To address these challenges, we introduce a novel framework that leverages physics-informed neural networks (PINN) to model TV-AR/TV-VAR processes. The proposed method extends the PINN framework to time series analysis by reducing reliance on explicitly defined physical structures, thereby broadening its applicability. Its effectiveness is validated through simulations on synthetic data and an empirical study of real-world health-related time series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信