{"title":"结合空间熵量化和机器学习校正的传声器阵列三维声源定位。","authors":"Guangneng Li, Feiyu Zhao, Wei Tian, Tong Yang","doi":"10.3390/e27090942","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, with the popularization of intelligent scene monitoring, sound source localization (SSL) has become a major means for indoor monitoring and target positioning. However, existing sound source localization solutions are difficult to extend to multi-source and three-dimensional scenarios. To address this, this paper proposes a three-dimensional sound source localization technology based on eight microphones. Specifically, the method employs a rectangular eight-microphone array and captures Direction-of-Arrival (DOA) information via the direct path relative transfer function (DP-RTF). It introduces spatial entropy to quantify the uncertainty caused by the exponentially growing DOA combinations as the number of sound sources increases, while further reducing the spatial entropy of sound source localization through geometric intersection. This solves the problem that traditional sound source localization methods cannot be applied to multi-source and three-dimensional scenarios. On the other hand, machine learning is used to eliminate coordinate deviations caused by DOA estimation errors of the direct path relative transfer function (DP-RTF) and deviations in microphone geometric parameters. Both simulation experiments and real-scene experiments show that the positioning error of the proposed method in three-dimensional scenarios is about 10.0 cm.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468556/pdf/","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Sound Source Localization with Microphone Array Combining Spatial Entropy Quantification and Machine Learning Correction.\",\"authors\":\"Guangneng Li, Feiyu Zhao, Wei Tian, Tong Yang\",\"doi\":\"10.3390/e27090942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, with the popularization of intelligent scene monitoring, sound source localization (SSL) has become a major means for indoor monitoring and target positioning. However, existing sound source localization solutions are difficult to extend to multi-source and three-dimensional scenarios. To address this, this paper proposes a three-dimensional sound source localization technology based on eight microphones. Specifically, the method employs a rectangular eight-microphone array and captures Direction-of-Arrival (DOA) information via the direct path relative transfer function (DP-RTF). It introduces spatial entropy to quantify the uncertainty caused by the exponentially growing DOA combinations as the number of sound sources increases, while further reducing the spatial entropy of sound source localization through geometric intersection. This solves the problem that traditional sound source localization methods cannot be applied to multi-source and three-dimensional scenarios. On the other hand, machine learning is used to eliminate coordinate deviations caused by DOA estimation errors of the direct path relative transfer function (DP-RTF) and deviations in microphone geometric parameters. Both simulation experiments and real-scene experiments show that the positioning error of the proposed method in three-dimensional scenarios is about 10.0 cm.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468556/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090942\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090942","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Three-Dimensional Sound Source Localization with Microphone Array Combining Spatial Entropy Quantification and Machine Learning Correction.
In recent years, with the popularization of intelligent scene monitoring, sound source localization (SSL) has become a major means for indoor monitoring and target positioning. However, existing sound source localization solutions are difficult to extend to multi-source and three-dimensional scenarios. To address this, this paper proposes a three-dimensional sound source localization technology based on eight microphones. Specifically, the method employs a rectangular eight-microphone array and captures Direction-of-Arrival (DOA) information via the direct path relative transfer function (DP-RTF). It introduces spatial entropy to quantify the uncertainty caused by the exponentially growing DOA combinations as the number of sound sources increases, while further reducing the spatial entropy of sound source localization through geometric intersection. This solves the problem that traditional sound source localization methods cannot be applied to multi-source and three-dimensional scenarios. On the other hand, machine learning is used to eliminate coordinate deviations caused by DOA estimation errors of the direct path relative transfer function (DP-RTF) and deviations in microphone geometric parameters. Both simulation experiments and real-scene experiments show that the positioning error of the proposed method in three-dimensional scenarios is about 10.0 cm.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.