{"title":"夏洛克·福尔摩斯不掷骰子:不确定推理的数学当事情可能发生时,你甚至无法弄清楚。","authors":"Guido Fioretti","doi":"10.3390/e27090931","DOIUrl":null,"url":null,"abstract":"<p><p>While Evidence Theory (also known as Dempster-Shafer Theory, or Belief Functions Theory) is being increasingly used in data fusion, its potentialities in the Social and Life Sciences are often obscured by lack of awareness of its distinctive features. In particular, with this paper I stress that an extended version of Evidence Theory can express the uncertainty deriving from the fear that events may materialize, that one is not even able to figure out. By contrast, Probability Theory must limit itself to the possibilities that a decision-maker is currently envisaging. I compare this extended version of Evidence Theory to cutting-edge extensions of Probability Theory, such as imprecise and sub-additive probabilities, as well as unconventional versions of Information Theory that are employed in data fusion and transmission of cultural information. A possible application to creative usage of Large Language Models is outlined, and further extensions to multi-agent interactions are outlined.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468343/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sherlock Holmes Doesn't Play Dice: The Mathematics of Uncertain Reasoning When Something May Happen, That You Are Not Even Able to Figure Out.\",\"authors\":\"Guido Fioretti\",\"doi\":\"10.3390/e27090931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While Evidence Theory (also known as Dempster-Shafer Theory, or Belief Functions Theory) is being increasingly used in data fusion, its potentialities in the Social and Life Sciences are often obscured by lack of awareness of its distinctive features. In particular, with this paper I stress that an extended version of Evidence Theory can express the uncertainty deriving from the fear that events may materialize, that one is not even able to figure out. By contrast, Probability Theory must limit itself to the possibilities that a decision-maker is currently envisaging. I compare this extended version of Evidence Theory to cutting-edge extensions of Probability Theory, such as imprecise and sub-additive probabilities, as well as unconventional versions of Information Theory that are employed in data fusion and transmission of cultural information. A possible application to creative usage of Large Language Models is outlined, and further extensions to multi-agent interactions are outlined.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468343/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090931\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090931","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Sherlock Holmes Doesn't Play Dice: The Mathematics of Uncertain Reasoning When Something May Happen, That You Are Not Even Able to Figure Out.
While Evidence Theory (also known as Dempster-Shafer Theory, or Belief Functions Theory) is being increasingly used in data fusion, its potentialities in the Social and Life Sciences are often obscured by lack of awareness of its distinctive features. In particular, with this paper I stress that an extended version of Evidence Theory can express the uncertainty deriving from the fear that events may materialize, that one is not even able to figure out. By contrast, Probability Theory must limit itself to the possibilities that a decision-maker is currently envisaging. I compare this extended version of Evidence Theory to cutting-edge extensions of Probability Theory, such as imprecise and sub-additive probabilities, as well as unconventional versions of Information Theory that are employed in data fusion and transmission of cultural information. A possible application to creative usage of Large Language Models is outlined, and further extensions to multi-agent interactions are outlined.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.