{"title":"桥接直觉与数据:优化无人机群性能的统一贝叶斯框架。","authors":"Ruiguo Zhong, Zidong Wang, Hao Wang, Yanghui Jin, Shuangxia Bai, Xiaoguang Gao","doi":"10.3390/e27090897","DOIUrl":null,"url":null,"abstract":"<p><p>The swift growth of the low-altitude economic ecosystem and Unmanned Aerial Vehicle (UAV) swarm applications across diverse sectors presents significant challenges for engineering managers in terms of effective performance evaluation and operational optimization. Traditional evaluation methods often struggle with the inherent complexities, dynamic nature, and multi-faceted performance criteria of UAV swarms. This study introduces a novel Bayesian Network (BN)-based multicriteria decision-making framework that systematically integrates expert intuition with real-time data. By employing variance decomposition, the framework establishes theoretically grounded, bidirectional mapping between expert-assigned weights and the network's probabilistic parameters, creating a unified model of subjective expertise and objective data. Comprehensive validation demonstrates the framework's efficacy in identifying critical performance drivers, including environmental awareness, communication ability, and a collaborative decision. Ultimately, our work provides engineering managers with a transparent and adaptive tool, offering actionable insights to inform resource allocation, guide technology adoption, and enhance the overall operational effectiveness of complex UAV swarm systems.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469126/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bridging Intuition and Data: A Unified Bayesian Framework for Optimizing Unmanned Aerial Vehicle Swarm Performance.\",\"authors\":\"Ruiguo Zhong, Zidong Wang, Hao Wang, Yanghui Jin, Shuangxia Bai, Xiaoguang Gao\",\"doi\":\"10.3390/e27090897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The swift growth of the low-altitude economic ecosystem and Unmanned Aerial Vehicle (UAV) swarm applications across diverse sectors presents significant challenges for engineering managers in terms of effective performance evaluation and operational optimization. Traditional evaluation methods often struggle with the inherent complexities, dynamic nature, and multi-faceted performance criteria of UAV swarms. This study introduces a novel Bayesian Network (BN)-based multicriteria decision-making framework that systematically integrates expert intuition with real-time data. By employing variance decomposition, the framework establishes theoretically grounded, bidirectional mapping between expert-assigned weights and the network's probabilistic parameters, creating a unified model of subjective expertise and objective data. Comprehensive validation demonstrates the framework's efficacy in identifying critical performance drivers, including environmental awareness, communication ability, and a collaborative decision. Ultimately, our work provides engineering managers with a transparent and adaptive tool, offering actionable insights to inform resource allocation, guide technology adoption, and enhance the overall operational effectiveness of complex UAV swarm systems.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469126/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090897\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090897","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Bridging Intuition and Data: A Unified Bayesian Framework for Optimizing Unmanned Aerial Vehicle Swarm Performance.
The swift growth of the low-altitude economic ecosystem and Unmanned Aerial Vehicle (UAV) swarm applications across diverse sectors presents significant challenges for engineering managers in terms of effective performance evaluation and operational optimization. Traditional evaluation methods often struggle with the inherent complexities, dynamic nature, and multi-faceted performance criteria of UAV swarms. This study introduces a novel Bayesian Network (BN)-based multicriteria decision-making framework that systematically integrates expert intuition with real-time data. By employing variance decomposition, the framework establishes theoretically grounded, bidirectional mapping between expert-assigned weights and the network's probabilistic parameters, creating a unified model of subjective expertise and objective data. Comprehensive validation demonstrates the framework's efficacy in identifying critical performance drivers, including environmental awareness, communication ability, and a collaborative decision. Ultimately, our work provides engineering managers with a transparent and adaptive tool, offering actionable insights to inform resource allocation, guide technology adoption, and enhance the overall operational effectiveness of complex UAV swarm systems.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.