{"title":"时间敏感型工业物联网中基于噪声鲁棒的时钟参数估计和低开销时间同步。","authors":"Long Tang, Fangyan Li, Zichao Yu, Haiyong Zeng","doi":"10.3390/e27090927","DOIUrl":null,"url":null,"abstract":"<p><p>Time synchronization is critical for task-oriented and time-sensitive Industrial Internet of Things (IIoT) systems. Nevertheless, achieving high-precision synchronization with low communication overhead remains a key challenge due to the constrained resources of IIoT devices. In this paper, we propose a single-timestamp time synchronization scheme that significantly reduces communication overhead by utilizing the mechanism of AP to periodically collect sensor device data. The reduced communication overhead alleviates network congestion, which is essential for achieving low end-to-end latency in synchronized IIoT networks. Furthermore, to mitigate the impact of random delay noise on clock parameter estimation, we propose a noise-robust-based Maximum Likelihood Estimation (NR-MLE) algorithm that jointly optimizes synchronization accuracy and resilience to random delays. Specifically, we decompose the collected timestamp matrix into two low-rank matrices and use gradient descent to minimize reconstruction error and regularization, approximating the true signal and removing noise. The denoised timestamp matrix is then used to jointly estimate clock skew and offset via MLE, with the corresponding Cramér-Rao Lower Bounds (CRLBs) being derived. The simulation results demonstrate that the NR-MLE algorithm achieves a higher clock parameter estimation accuracy than conventional MLE and exhibits strong robustness against increasing noise levels.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468194/pdf/","citationCount":"0","resultStr":"{\"title\":\"Noise-Robust-Based Clock Parameter Estimation and Low-Overhead Time Synchronization in Time-Sensitive Industrial Internet of Things.\",\"authors\":\"Long Tang, Fangyan Li, Zichao Yu, Haiyong Zeng\",\"doi\":\"10.3390/e27090927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Time synchronization is critical for task-oriented and time-sensitive Industrial Internet of Things (IIoT) systems. Nevertheless, achieving high-precision synchronization with low communication overhead remains a key challenge due to the constrained resources of IIoT devices. In this paper, we propose a single-timestamp time synchronization scheme that significantly reduces communication overhead by utilizing the mechanism of AP to periodically collect sensor device data. The reduced communication overhead alleviates network congestion, which is essential for achieving low end-to-end latency in synchronized IIoT networks. Furthermore, to mitigate the impact of random delay noise on clock parameter estimation, we propose a noise-robust-based Maximum Likelihood Estimation (NR-MLE) algorithm that jointly optimizes synchronization accuracy and resilience to random delays. Specifically, we decompose the collected timestamp matrix into two low-rank matrices and use gradient descent to minimize reconstruction error and regularization, approximating the true signal and removing noise. The denoised timestamp matrix is then used to jointly estimate clock skew and offset via MLE, with the corresponding Cramér-Rao Lower Bounds (CRLBs) being derived. The simulation results demonstrate that the NR-MLE algorithm achieves a higher clock parameter estimation accuracy than conventional MLE and exhibits strong robustness against increasing noise levels.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468194/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090927\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090927","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Noise-Robust-Based Clock Parameter Estimation and Low-Overhead Time Synchronization in Time-Sensitive Industrial Internet of Things.
Time synchronization is critical for task-oriented and time-sensitive Industrial Internet of Things (IIoT) systems. Nevertheless, achieving high-precision synchronization with low communication overhead remains a key challenge due to the constrained resources of IIoT devices. In this paper, we propose a single-timestamp time synchronization scheme that significantly reduces communication overhead by utilizing the mechanism of AP to periodically collect sensor device data. The reduced communication overhead alleviates network congestion, which is essential for achieving low end-to-end latency in synchronized IIoT networks. Furthermore, to mitigate the impact of random delay noise on clock parameter estimation, we propose a noise-robust-based Maximum Likelihood Estimation (NR-MLE) algorithm that jointly optimizes synchronization accuracy and resilience to random delays. Specifically, we decompose the collected timestamp matrix into two low-rank matrices and use gradient descent to minimize reconstruction error and regularization, approximating the true signal and removing noise. The denoised timestamp matrix is then used to jointly estimate clock skew and offset via MLE, with the corresponding Cramér-Rao Lower Bounds (CRLBs) being derived. The simulation results demonstrate that the NR-MLE algorithm achieves a higher clock parameter estimation accuracy than conventional MLE and exhibits strong robustness against increasing noise levels.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.