基于drem的混沌系统辨识方法。

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-09-18 DOI:10.3390/e27090971
Carlos Aguilar-Ibanez, Miguel S Suarez-Castanon, Belem Saldivar, José E Valdez-Rodríguez, Eloísa García-Canseco
{"title":"基于drem的混沌系统辨识方法。","authors":"Carlos Aguilar-Ibanez, Miguel S Suarez-Castanon, Belem Saldivar, José E Valdez-Rodríguez, Eloísa García-Canseco","doi":"10.3390/e27090971","DOIUrl":null,"url":null,"abstract":"<p><p>A straightforward methodology for identifying certain classes of chaotic systems based on a novel version of the least-squares method, assuming they are algebraically observable and identifiable with respect to a measurable output, is introduced. This output allows us to express the original system as a chain of integrators, where the last term, which depends on the output and its corresponding time derivatives, lumps the system's non-linearities. We can factorize this term into a regressor function multiplied by an unknown-parameter vector, suggesting that a high-gain observer can be used to simultaneously and approximately estimate the states of the pure integrator and the evolution of the lumped nonlinear term. This allows us to rewrite the original system as a linear regression equation. This configuration enables the above-mentioned least-squares method to recover the chaotic-system parameters.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468986/pdf/","citationCount":"0","resultStr":"{\"title\":\"A DREM-Based Approach for the Identification of Chaotic Systems.\",\"authors\":\"Carlos Aguilar-Ibanez, Miguel S Suarez-Castanon, Belem Saldivar, José E Valdez-Rodríguez, Eloísa García-Canseco\",\"doi\":\"10.3390/e27090971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A straightforward methodology for identifying certain classes of chaotic systems based on a novel version of the least-squares method, assuming they are algebraically observable and identifiable with respect to a measurable output, is introduced. This output allows us to express the original system as a chain of integrators, where the last term, which depends on the output and its corresponding time derivatives, lumps the system's non-linearities. We can factorize this term into a regressor function multiplied by an unknown-parameter vector, suggesting that a high-gain observer can be used to simultaneously and approximately estimate the states of the pure integrator and the evolution of the lumped nonlinear term. This allows us to rewrite the original system as a linear regression equation. This configuration enables the above-mentioned least-squares method to recover the chaotic-system parameters.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468986/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090971\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090971","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种基于最小二乘法的新版本的简单方法,用于识别某些类别的混沌系统,假设它们在代数上是可观察的,并且相对于可测量的输出是可识别的。这个输出允许我们将原始系统表示为一个积分器链,其中最后一项依赖于输出及其相应的时间导数,集中了系统的非线性。我们可以将该项分解为一个回归函数乘以一个未知参数向量,这表明高增益观测器可以同时近似估计纯积分器的状态和集总非线性项的演化。这样我们就可以把原来的方程组写成线性回归方程。这种构型使得上述最小二乘法能够恢复混沌系统参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A DREM-Based Approach for the Identification of Chaotic Systems.

A straightforward methodology for identifying certain classes of chaotic systems based on a novel version of the least-squares method, assuming they are algebraically observable and identifiable with respect to a measurable output, is introduced. This output allows us to express the original system as a chain of integrators, where the last term, which depends on the output and its corresponding time derivatives, lumps the system's non-linearities. We can factorize this term into a regressor function multiplied by an unknown-parameter vector, suggesting that a high-gain observer can be used to simultaneously and approximately estimate the states of the pure integrator and the evolution of the lumped nonlinear term. This allows us to rewrite the original system as a linear regression equation. This configuration enables the above-mentioned least-squares method to recover the chaotic-system parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信