一种基于神经自回归流的拟蒙特卡罗方法。

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-09-13 DOI:10.3390/e27090952
Yunfan Wei, Wei Xi
{"title":"一种基于神经自回归流的拟蒙特卡罗方法。","authors":"Yunfan Wei, Wei Xi","doi":"10.3390/e27090952","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a novel transport quasi-Monte Carlo framework that combines randomized quasi-Monte Carlo sampling with a neural autoregressive flow architecture for efficient sampling and integration over complex, high-dimensional distributions. The method constructs a sequence of invertible transport maps to approximate the target density by decomposing it into a series of lower-dimensional marginals. Each sub-model leverages normalizing flows parameterized via monotonic beta-averaging transformations and is optimized using forward Kullback-Leibler (KL) divergence. To enhance computational efficiency, a hidden-variable mechanism that transfers optimized parameters between sub-models is adopted. Numerical experiments on a banana-shaped distribution demonstrate that this new approach outperforms standard Monte Carlo-based normalizing flows in both sampling accuracy and integral estimation. Further, the model is applied to A-share stock return data and shows reliable predictive performance in semiannual return forecasts, while accurately capturing covariance structures across assets. The results highlight the potential of transport quasi-Monte Carlo (TQMC) in financial modeling and other high-dimensional inference tasks.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468320/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Quasi-Monte Carlo Method Based on Neural Autoregressive Flow.\",\"authors\":\"Yunfan Wei, Wei Xi\",\"doi\":\"10.3390/e27090952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a novel transport quasi-Monte Carlo framework that combines randomized quasi-Monte Carlo sampling with a neural autoregressive flow architecture for efficient sampling and integration over complex, high-dimensional distributions. The method constructs a sequence of invertible transport maps to approximate the target density by decomposing it into a series of lower-dimensional marginals. Each sub-model leverages normalizing flows parameterized via monotonic beta-averaging transformations and is optimized using forward Kullback-Leibler (KL) divergence. To enhance computational efficiency, a hidden-variable mechanism that transfers optimized parameters between sub-models is adopted. Numerical experiments on a banana-shaped distribution demonstrate that this new approach outperforms standard Monte Carlo-based normalizing flows in both sampling accuracy and integral estimation. Further, the model is applied to A-share stock return data and shows reliable predictive performance in semiannual return forecasts, while accurately capturing covariance structures across assets. The results highlight the potential of transport quasi-Monte Carlo (TQMC) in financial modeling and other high-dimensional inference tasks.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468320/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090952\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090952","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的传输准蒙特卡罗框架,该框架将随机准蒙特卡罗采样与神经自回归流结构相结合,以便在复杂的高维分布上进行有效的采样和积分。该方法通过将目标密度分解为一系列低维边缘来构造一系列可逆传输映射来近似目标密度。每个子模型利用通过单调平均变换参数化的归一化流,并使用前向Kullback-Leibler (KL)散度进行优化。为了提高计算效率,采用隐变量机制在子模型之间传递优化参数。香蕉形分布的数值实验表明,该方法在采样精度和积分估计方面都优于基于蒙特卡罗的标准归一化流。此外,将该模型应用于a股股票收益数据,在半年收益预测中显示出可靠的预测性能,同时准确地捕捉了资产间的协方差结构。结果强调了运输准蒙特卡罗(TQMC)在金融建模和其他高维推理任务中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Quasi-Monte Carlo Method Based on Neural Autoregressive Flow.

This paper proposes a novel transport quasi-Monte Carlo framework that combines randomized quasi-Monte Carlo sampling with a neural autoregressive flow architecture for efficient sampling and integration over complex, high-dimensional distributions. The method constructs a sequence of invertible transport maps to approximate the target density by decomposing it into a series of lower-dimensional marginals. Each sub-model leverages normalizing flows parameterized via monotonic beta-averaging transformations and is optimized using forward Kullback-Leibler (KL) divergence. To enhance computational efficiency, a hidden-variable mechanism that transfers optimized parameters between sub-models is adopted. Numerical experiments on a banana-shaped distribution demonstrate that this new approach outperforms standard Monte Carlo-based normalizing flows in both sampling accuracy and integral estimation. Further, the model is applied to A-share stock return data and shows reliable predictive performance in semiannual return forecasts, while accurately capturing covariance structures across assets. The results highlight the potential of transport quasi-Monte Carlo (TQMC) in financial modeling and other high-dimensional inference tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信