Qingqing Hou, Rui Xia, Bodong Yuan, Muhammad Aqeel, Ying Sun, Longwei Dong, Abdul Manan, Fan Li, Yan Deng, Xusheng Guo, Guili Wu, Jinzhi Ran, Weigang Hu, Jihua Wu, Xinrong Li, Jianming Deng
{"title":"腾格里沙漠53年恢复过程中丰富和稀有土壤细菌的多样性聚集过程及多功能性贡献","authors":"Qingqing Hou, Rui Xia, Bodong Yuan, Muhammad Aqeel, Ying Sun, Longwei Dong, Abdul Manan, Fan Li, Yan Deng, Xusheng Guo, Guili Wu, Jinzhi Ran, Weigang Hu, Jihua Wu, Xinrong Li, Jianming Deng","doi":"10.1038/s42003-025-08764-8","DOIUrl":null,"url":null,"abstract":"<p><p>Soil microbial communities play vital roles in driving ecosystem restoration. However, understanding of the successional dynamics of abundant and rare bacterial subcommunities and their relationships with ecosystem multifunctionality during restoration, particularly in desertified ecosystems, remains limited. Here, we examined the succession of abundant, intermediate, and rare bacterial subcommunities over a 53-year restoration chronosequence following the implementation of straw checkerboard barriers in the Tengger Desert, China. Our findings revealed that the establishment of straw checkerboard barriers significantly increased the richness of abundant, intermediate, and rare taxa over time. However, our results indicated a divergence in ecological processes underpinning the successional dynamics of soil bacterial communities. Stochastic processes and homogeneous selection primarily governed the assembly of abundant and rare subcommunities, respectively, as evidenced by fundamental differences in their niche breadth. More importantly, we further uncovered a dual mechanism underlying the relationships between soil bacterial communities and ecosystem multifunctionality. Abundant taxa were integrally associated with multiple nutrient cycling-related functions simultaneously, likely mediated through coordinated environmental responses or potential interspecies connections, whereas rare taxa were more linked to individual functions independently. These findings deepen our understanding of the successional dynamics of soil microbial communities and the microbe-ecosystem multifunctionality relationships in desert restoration.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1376"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474879/pdf/","citationCount":"0","resultStr":"{\"title\":\"Divergent community assembly processes and multifunctionality contributions of abundant and rare soil bacteria during a 53-year restoration in the Tengger Desert, China.\",\"authors\":\"Qingqing Hou, Rui Xia, Bodong Yuan, Muhammad Aqeel, Ying Sun, Longwei Dong, Abdul Manan, Fan Li, Yan Deng, Xusheng Guo, Guili Wu, Jinzhi Ran, Weigang Hu, Jihua Wu, Xinrong Li, Jianming Deng\",\"doi\":\"10.1038/s42003-025-08764-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil microbial communities play vital roles in driving ecosystem restoration. However, understanding of the successional dynamics of abundant and rare bacterial subcommunities and their relationships with ecosystem multifunctionality during restoration, particularly in desertified ecosystems, remains limited. Here, we examined the succession of abundant, intermediate, and rare bacterial subcommunities over a 53-year restoration chronosequence following the implementation of straw checkerboard barriers in the Tengger Desert, China. Our findings revealed that the establishment of straw checkerboard barriers significantly increased the richness of abundant, intermediate, and rare taxa over time. However, our results indicated a divergence in ecological processes underpinning the successional dynamics of soil bacterial communities. Stochastic processes and homogeneous selection primarily governed the assembly of abundant and rare subcommunities, respectively, as evidenced by fundamental differences in their niche breadth. More importantly, we further uncovered a dual mechanism underlying the relationships between soil bacterial communities and ecosystem multifunctionality. Abundant taxa were integrally associated with multiple nutrient cycling-related functions simultaneously, likely mediated through coordinated environmental responses or potential interspecies connections, whereas rare taxa were more linked to individual functions independently. These findings deepen our understanding of the successional dynamics of soil microbial communities and the microbe-ecosystem multifunctionality relationships in desert restoration.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"8 1\",\"pages\":\"1376\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474879/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-025-08764-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08764-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Divergent community assembly processes and multifunctionality contributions of abundant and rare soil bacteria during a 53-year restoration in the Tengger Desert, China.
Soil microbial communities play vital roles in driving ecosystem restoration. However, understanding of the successional dynamics of abundant and rare bacterial subcommunities and their relationships with ecosystem multifunctionality during restoration, particularly in desertified ecosystems, remains limited. Here, we examined the succession of abundant, intermediate, and rare bacterial subcommunities over a 53-year restoration chronosequence following the implementation of straw checkerboard barriers in the Tengger Desert, China. Our findings revealed that the establishment of straw checkerboard barriers significantly increased the richness of abundant, intermediate, and rare taxa over time. However, our results indicated a divergence in ecological processes underpinning the successional dynamics of soil bacterial communities. Stochastic processes and homogeneous selection primarily governed the assembly of abundant and rare subcommunities, respectively, as evidenced by fundamental differences in their niche breadth. More importantly, we further uncovered a dual mechanism underlying the relationships between soil bacterial communities and ecosystem multifunctionality. Abundant taxa were integrally associated with multiple nutrient cycling-related functions simultaneously, likely mediated through coordinated environmental responses or potential interspecies connections, whereas rare taxa were more linked to individual functions independently. These findings deepen our understanding of the successional dynamics of soil microbial communities and the microbe-ecosystem multifunctionality relationships in desert restoration.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.