{"title":"基于脑电图的机器学习在阅读障碍和自闭症谱系障碍中的生物标志物检测:模型、特征和诊断效用的比较回顾。","authors":"Günet Eroğlu","doi":"10.3390/diagnostics15182388","DOIUrl":null,"url":null,"abstract":"<p><p>To uncover neurobiological indicators related to autism spectrum disorders and developmental dyslexia, this article gives a full overview of the most recent advances in machine learning and deep learning methods based on electroencephalography. We look into methodological pipelines that include signal gathering, preprocessing, feature engineering, model selection, and interpretability procedures. We based these pipelines on 15 peer-reviewed research papers published between 2013 and 2025. Most of the research employed the 10-20 system for resting-state EEG and followed MATLAB, MNE-Python, or EEGLAB guidelines for preprocessing. The feature sets included spectral power, functional connectivity, task-evoked potentials, and entropy measures. People used many standard ML methods, such as support vector machines and random forests, as well as more advanced models, like deep neural networks and transformer-based architectures. Several studies found that both dyslexic and ASD groups did well at classifying, with accuracy scores between 82% and 99.2%. The new models could be used in therapeutic settings, but there are still problems with how easy they are to understand and how well they apply to a wide range of situations. This is especially true for ASD because its spectrum is so varied.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 18","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468693/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electroencephalography-Based Machine Learning for Biomarker Detection in Dyslexia and Autism Spectrum Disorder: A Comparative Review of Models, Features, and Diagnostic Utility.\",\"authors\":\"Günet Eroğlu\",\"doi\":\"10.3390/diagnostics15182388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To uncover neurobiological indicators related to autism spectrum disorders and developmental dyslexia, this article gives a full overview of the most recent advances in machine learning and deep learning methods based on electroencephalography. We look into methodological pipelines that include signal gathering, preprocessing, feature engineering, model selection, and interpretability procedures. We based these pipelines on 15 peer-reviewed research papers published between 2013 and 2025. Most of the research employed the 10-20 system for resting-state EEG and followed MATLAB, MNE-Python, or EEGLAB guidelines for preprocessing. The feature sets included spectral power, functional connectivity, task-evoked potentials, and entropy measures. People used many standard ML methods, such as support vector machines and random forests, as well as more advanced models, like deep neural networks and transformer-based architectures. Several studies found that both dyslexic and ASD groups did well at classifying, with accuracy scores between 82% and 99.2%. The new models could be used in therapeutic settings, but there are still problems with how easy they are to understand and how well they apply to a wide range of situations. This is especially true for ASD because its spectrum is so varied.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468693/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15182388\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15182388","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Electroencephalography-Based Machine Learning for Biomarker Detection in Dyslexia and Autism Spectrum Disorder: A Comparative Review of Models, Features, and Diagnostic Utility.
To uncover neurobiological indicators related to autism spectrum disorders and developmental dyslexia, this article gives a full overview of the most recent advances in machine learning and deep learning methods based on electroencephalography. We look into methodological pipelines that include signal gathering, preprocessing, feature engineering, model selection, and interpretability procedures. We based these pipelines on 15 peer-reviewed research papers published between 2013 and 2025. Most of the research employed the 10-20 system for resting-state EEG and followed MATLAB, MNE-Python, or EEGLAB guidelines for preprocessing. The feature sets included spectral power, functional connectivity, task-evoked potentials, and entropy measures. People used many standard ML methods, such as support vector machines and random forests, as well as more advanced models, like deep neural networks and transformer-based architectures. Several studies found that both dyslexic and ASD groups did well at classifying, with accuracy scores between 82% and 99.2%. The new models could be used in therapeutic settings, but there are still problems with how easy they are to understand and how well they apply to a wide range of situations. This is especially true for ASD because its spectrum is so varied.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.