Zekai Liu, Qi Yong H Ai, Andy Wai Kan Yeung, Ray Tanaka, Andrew Nalley, Kuo Feng Hung
{"title":"使用不同牙齿编号系统的视觉语言模型在全景x光片上检测常见牙齿状况的性能。","authors":"Zekai Liu, Qi Yong H Ai, Andy Wai Kan Yeung, Ray Tanaka, Andrew Nalley, Kuo Feng Hung","doi":"10.3390/diagnostics15182315","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives</b>: The aim of this study was to evaluate the performance of GPT-4o in identifying nine common dental conditions on panoramic radiographs, both overall and at specific tooth sites, and to assess whether the use of different tooth numbering systems (FDI and Universal) in prompts would affect its diagnostic accuracy. <b>Methods</b>: Fifty panoramic radiographs exhibiting various common dental conditions including missing teeth, impacted teeth, caries, endodontically treated teeth, teeth with restorations, periapical lesions, periodontal bone loss, tooth fractures, cracks, retained roots, dental implants, osteolytic lesions, and osteosclerosis were included. Each image was evaluated twice by GPT-4o in May 2025, using structured prompts based on either the FDI or Universal tooth numbering system, to identify the presence of these conditions at specific tooth sites or regions. GPT-4o responses were compared to a consensus reference standard established by an oral-maxillofacial radiology team. GPT-4o's performance was evaluated using balanced accuracy, sensitivity, specificity, and F1 score both at the patient and tooth levels. <b>Results</b>: A total of 100 GPT-4o responses were generated. At the patient level, balanced accuracy ranged from 46.25% to 98.83% (FDI) and 49.75% to 92.86% (Universal), with the highest accuracies for dental implants (92.86-98.83%). F1-scores and sensitivities were highest for implants, missing, and impacted teeth, but zero for caries, periapical lesions, and fractures. Specificity was generally high across conditions. Notable discrepancies were observed between patient- and tooth-level performance, especially for implants and restorations. GPT-4o's performance was similar between using the two numbering systems. <b>Conclusions</b>: GPT-4o demonstrated superior performance in detecting dental implants and treated or restored teeth but inferior performance for caries, periapical lesions, and fractures. Diagnostic accuracy was higher at the patient level than at the tooth level, with similar performances for both numbering systems. Future studies with larger, more diverse datasets and multiple models are needed.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 18","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468776/pdf/","citationCount":"0","resultStr":"{\"title\":\"Performance of a Vision-Language Model in Detecting Common Dental Conditions on Panoramic Radiographs Using Different Tooth Numbering Systems.\",\"authors\":\"Zekai Liu, Qi Yong H Ai, Andy Wai Kan Yeung, Ray Tanaka, Andrew Nalley, Kuo Feng Hung\",\"doi\":\"10.3390/diagnostics15182315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objectives</b>: The aim of this study was to evaluate the performance of GPT-4o in identifying nine common dental conditions on panoramic radiographs, both overall and at specific tooth sites, and to assess whether the use of different tooth numbering systems (FDI and Universal) in prompts would affect its diagnostic accuracy. <b>Methods</b>: Fifty panoramic radiographs exhibiting various common dental conditions including missing teeth, impacted teeth, caries, endodontically treated teeth, teeth with restorations, periapical lesions, periodontal bone loss, tooth fractures, cracks, retained roots, dental implants, osteolytic lesions, and osteosclerosis were included. Each image was evaluated twice by GPT-4o in May 2025, using structured prompts based on either the FDI or Universal tooth numbering system, to identify the presence of these conditions at specific tooth sites or regions. GPT-4o responses were compared to a consensus reference standard established by an oral-maxillofacial radiology team. GPT-4o's performance was evaluated using balanced accuracy, sensitivity, specificity, and F1 score both at the patient and tooth levels. <b>Results</b>: A total of 100 GPT-4o responses were generated. At the patient level, balanced accuracy ranged from 46.25% to 98.83% (FDI) and 49.75% to 92.86% (Universal), with the highest accuracies for dental implants (92.86-98.83%). F1-scores and sensitivities were highest for implants, missing, and impacted teeth, but zero for caries, periapical lesions, and fractures. Specificity was generally high across conditions. Notable discrepancies were observed between patient- and tooth-level performance, especially for implants and restorations. GPT-4o's performance was similar between using the two numbering systems. <b>Conclusions</b>: GPT-4o demonstrated superior performance in detecting dental implants and treated or restored teeth but inferior performance for caries, periapical lesions, and fractures. Diagnostic accuracy was higher at the patient level than at the tooth level, with similar performances for both numbering systems. Future studies with larger, more diverse datasets and multiple models are needed.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468776/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15182315\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15182315","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Performance of a Vision-Language Model in Detecting Common Dental Conditions on Panoramic Radiographs Using Different Tooth Numbering Systems.
Objectives: The aim of this study was to evaluate the performance of GPT-4o in identifying nine common dental conditions on panoramic radiographs, both overall and at specific tooth sites, and to assess whether the use of different tooth numbering systems (FDI and Universal) in prompts would affect its diagnostic accuracy. Methods: Fifty panoramic radiographs exhibiting various common dental conditions including missing teeth, impacted teeth, caries, endodontically treated teeth, teeth with restorations, periapical lesions, periodontal bone loss, tooth fractures, cracks, retained roots, dental implants, osteolytic lesions, and osteosclerosis were included. Each image was evaluated twice by GPT-4o in May 2025, using structured prompts based on either the FDI or Universal tooth numbering system, to identify the presence of these conditions at specific tooth sites or regions. GPT-4o responses were compared to a consensus reference standard established by an oral-maxillofacial radiology team. GPT-4o's performance was evaluated using balanced accuracy, sensitivity, specificity, and F1 score both at the patient and tooth levels. Results: A total of 100 GPT-4o responses were generated. At the patient level, balanced accuracy ranged from 46.25% to 98.83% (FDI) and 49.75% to 92.86% (Universal), with the highest accuracies for dental implants (92.86-98.83%). F1-scores and sensitivities were highest for implants, missing, and impacted teeth, but zero for caries, periapical lesions, and fractures. Specificity was generally high across conditions. Notable discrepancies were observed between patient- and tooth-level performance, especially for implants and restorations. GPT-4o's performance was similar between using the two numbering systems. Conclusions: GPT-4o demonstrated superior performance in detecting dental implants and treated or restored teeth but inferior performance for caries, periapical lesions, and fractures. Diagnostic accuracy was higher at the patient level than at the tooth level, with similar performances for both numbering systems. Future studies with larger, more diverse datasets and multiple models are needed.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.