Seul Ki Lee, Min Wook Joo, Jee-Young Kim, Mingeon Kim
{"title":"MRI放射组学预测弥漫性腱鞘巨细胞瘤的探索性研究。","authors":"Seul Ki Lee, Min Wook Joo, Jee-Young Kim, Mingeon Kim","doi":"10.3390/diagnostics15182399","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> To develop and validate a radiomics-based MRI model for prediction of diffuse-type tenosynovial giant cell tumor (D-TGCT), which has higher postoperative recurrence and more aggressive behavior than localized-type (L-TGCT). The study was conducted under the hypothesis that MRI-based radiomics models can predict D-TGCT with diagnostic performance significantly greater than chance level, as measured by the area under the receiver operating characteristic (ROC) curve (AUC) (null hypothesis: AUC ≤ 0.5; alternative hypothesis: AUC > 0.5). <b>Materials and Methods:</b> This retrospective study included 84 patients with histologically confirmed TGCT (54 L-TGCT, 30 D-TGCT) who underwent preoperative MRI between January 2005 and December 2024. Tumor segmentation was manually performed on T2-weighted (T2WI) and contrast-enhanced T1-weighted images. After standardized preprocessing, 1691 radiomic features were extracted, and feature selection was performed using minimum redundancy maximum relevance. Multivariate logistic regression (MLR) and random forest (RF) classifiers were developed using a training cohort (<i>n</i> = 52) and tested in an independent test cohort (<i>n</i> = 32). Model performance was assessed AUC, sensitivity, specificity, and accuracy. <b>Results:</b> In the training set, D-TGCT prevalence was 32.6%; in the test set, it was 40.6%. The MLR model used three T2WI features: wavelet-LHL_glszm_GrayLevelNonUniformity, wavelet-HLL_gldm_LowGrayLevelEmphasis, and square_firstorder_Median. Training performance was high (AUC 0.94; sensitivity 75.0%; specificity 90.9%; accuracy 85.7%) but dropped in testing (AUC 0.60; sensitivity 62.5%; specificity 60.6%; accuracy 61.2%). The RF classifier demonstrated more stable performance [(training) AUC 0.85; sensitivity 43.8%; specificity 87.9%; accuracy 73.5% and (test) AUC 0.73; sensitivity 56.2%; specificity 72.7%; accuracy 67.3%]. <b>Conclusions:</b> Radiomics-based MRI models may help predict D-TGCT. While the MLR model overfitted, the RF classifier demonstrated relatively greater robustness and generalizability, suggesting that it may support clinical decision-making for D-TGCT in the future.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 18","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468558/pdf/","citationCount":"0","resultStr":"{\"title\":\"MRI Radiomics for Predicting the Diffuse Type of Tenosynovial Giant Cell Tumor: An Exploratory Study.\",\"authors\":\"Seul Ki Lee, Min Wook Joo, Jee-Young Kim, Mingeon Kim\",\"doi\":\"10.3390/diagnostics15182399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> To develop and validate a radiomics-based MRI model for prediction of diffuse-type tenosynovial giant cell tumor (D-TGCT), which has higher postoperative recurrence and more aggressive behavior than localized-type (L-TGCT). The study was conducted under the hypothesis that MRI-based radiomics models can predict D-TGCT with diagnostic performance significantly greater than chance level, as measured by the area under the receiver operating characteristic (ROC) curve (AUC) (null hypothesis: AUC ≤ 0.5; alternative hypothesis: AUC > 0.5). <b>Materials and Methods:</b> This retrospective study included 84 patients with histologically confirmed TGCT (54 L-TGCT, 30 D-TGCT) who underwent preoperative MRI between January 2005 and December 2024. Tumor segmentation was manually performed on T2-weighted (T2WI) and contrast-enhanced T1-weighted images. After standardized preprocessing, 1691 radiomic features were extracted, and feature selection was performed using minimum redundancy maximum relevance. Multivariate logistic regression (MLR) and random forest (RF) classifiers were developed using a training cohort (<i>n</i> = 52) and tested in an independent test cohort (<i>n</i> = 32). Model performance was assessed AUC, sensitivity, specificity, and accuracy. <b>Results:</b> In the training set, D-TGCT prevalence was 32.6%; in the test set, it was 40.6%. The MLR model used three T2WI features: wavelet-LHL_glszm_GrayLevelNonUniformity, wavelet-HLL_gldm_LowGrayLevelEmphasis, and square_firstorder_Median. Training performance was high (AUC 0.94; sensitivity 75.0%; specificity 90.9%; accuracy 85.7%) but dropped in testing (AUC 0.60; sensitivity 62.5%; specificity 60.6%; accuracy 61.2%). The RF classifier demonstrated more stable performance [(training) AUC 0.85; sensitivity 43.8%; specificity 87.9%; accuracy 73.5% and (test) AUC 0.73; sensitivity 56.2%; specificity 72.7%; accuracy 67.3%]. <b>Conclusions:</b> Radiomics-based MRI models may help predict D-TGCT. While the MLR model overfitted, the RF classifier demonstrated relatively greater robustness and generalizability, suggesting that it may support clinical decision-making for D-TGCT in the future.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468558/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15182399\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15182399","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
MRI Radiomics for Predicting the Diffuse Type of Tenosynovial Giant Cell Tumor: An Exploratory Study.
Objective: To develop and validate a radiomics-based MRI model for prediction of diffuse-type tenosynovial giant cell tumor (D-TGCT), which has higher postoperative recurrence and more aggressive behavior than localized-type (L-TGCT). The study was conducted under the hypothesis that MRI-based radiomics models can predict D-TGCT with diagnostic performance significantly greater than chance level, as measured by the area under the receiver operating characteristic (ROC) curve (AUC) (null hypothesis: AUC ≤ 0.5; alternative hypothesis: AUC > 0.5). Materials and Methods: This retrospective study included 84 patients with histologically confirmed TGCT (54 L-TGCT, 30 D-TGCT) who underwent preoperative MRI between January 2005 and December 2024. Tumor segmentation was manually performed on T2-weighted (T2WI) and contrast-enhanced T1-weighted images. After standardized preprocessing, 1691 radiomic features were extracted, and feature selection was performed using minimum redundancy maximum relevance. Multivariate logistic regression (MLR) and random forest (RF) classifiers were developed using a training cohort (n = 52) and tested in an independent test cohort (n = 32). Model performance was assessed AUC, sensitivity, specificity, and accuracy. Results: In the training set, D-TGCT prevalence was 32.6%; in the test set, it was 40.6%. The MLR model used three T2WI features: wavelet-LHL_glszm_GrayLevelNonUniformity, wavelet-HLL_gldm_LowGrayLevelEmphasis, and square_firstorder_Median. Training performance was high (AUC 0.94; sensitivity 75.0%; specificity 90.9%; accuracy 85.7%) but dropped in testing (AUC 0.60; sensitivity 62.5%; specificity 60.6%; accuracy 61.2%). The RF classifier demonstrated more stable performance [(training) AUC 0.85; sensitivity 43.8%; specificity 87.9%; accuracy 73.5% and (test) AUC 0.73; sensitivity 56.2%; specificity 72.7%; accuracy 67.3%]. Conclusions: Radiomics-based MRI models may help predict D-TGCT. While the MLR model overfitted, the RF classifier demonstrated relatively greater robustness and generalizability, suggesting that it may support clinical decision-making for D-TGCT in the future.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.