Mathewos Tessema, Christin M Yingling, Loryn M Phillips, Kieu Do, Maria A Picchi, Randy Willink, Steven A Belinsky
{"title":"BRG1缺失在肺癌中很常见,并通过转录和表观遗传重编程转化肺上皮细胞。","authors":"Mathewos Tessema, Christin M Yingling, Loryn M Phillips, Kieu Do, Maria A Picchi, Randy Willink, Steven A Belinsky","doi":"10.3390/cancers17183092","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>The BRG1 loss-of-function (LOF) mutation is found in ~10% of non-small cell lung cancer (NSCLC) cases, but its role in lung tumorigenesis is unclear and so it is investigated in this study.</p><p><strong>Methods: </strong>BRG1-knockout (KO) lines were generated from various non-malignant, pre-malignant, and malignant human lung epithelium-derived cell lines using CRISPR. The effects of BRG1-KO on cell growth, the transcriptome, the methylome, and epigenetic therapy were compared with those of wild-type (BRG1-WT) isogenic controls using standard in vitro and in vivo assays.</p><p><strong>Results: </strong>The BRG1 protein was expressed in all non-/pre-malignant lung epithelial cells but lost in 47% (14/30) of NSCLC cell lines. BRG1-KO and cigarette smoke (CS) exposure individually transformed human bronchial epithelial cell lines (HBECs), as evidenced by anchorage-independent growth. BRG1-KO and CS produced additive to synergistic effects on sensitivity to transformation that differed across HBECs. RNA-seq analysis revealed that BRG1-KO significantly changed the expression of over 8500 genes on average, impacting lung development, function, damage repair, and cancer pathways, including axonal guidance, pulmonary wound healing, and epithelial-to-mesenchymal transition (EMT). BRG1-KO also led to the hypermethylation of >47,000 promoter CpGs within ~9500 genes on average in different HBECs, including silencing of epithelial genes involved in EMT and tumor suppressor genes. BRG1-KO also moderately increased the in vitro and in vivo sensitivity of NSCLC cells to some epigenetic drugs.</p><p><strong>Conclusions: </strong>BRG1-LOF is frequent in NSCLC; can drive the transformation of lung epithelial cells such that they acquire properties of pre-malignant cells, indicating a potential role in lung cancer initiation; and sensitizes lung tumors to epigenetic therapy.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 18","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468026/pdf/","citationCount":"0","resultStr":"{\"title\":\"BRG1 Loss Is Frequent in Lung Cancer and Transforms Lung Epithelial Cells via Transcriptional and Epigenetic Reprograming.\",\"authors\":\"Mathewos Tessema, Christin M Yingling, Loryn M Phillips, Kieu Do, Maria A Picchi, Randy Willink, Steven A Belinsky\",\"doi\":\"10.3390/cancers17183092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/objectives: </strong>The BRG1 loss-of-function (LOF) mutation is found in ~10% of non-small cell lung cancer (NSCLC) cases, but its role in lung tumorigenesis is unclear and so it is investigated in this study.</p><p><strong>Methods: </strong>BRG1-knockout (KO) lines were generated from various non-malignant, pre-malignant, and malignant human lung epithelium-derived cell lines using CRISPR. The effects of BRG1-KO on cell growth, the transcriptome, the methylome, and epigenetic therapy were compared with those of wild-type (BRG1-WT) isogenic controls using standard in vitro and in vivo assays.</p><p><strong>Results: </strong>The BRG1 protein was expressed in all non-/pre-malignant lung epithelial cells but lost in 47% (14/30) of NSCLC cell lines. BRG1-KO and cigarette smoke (CS) exposure individually transformed human bronchial epithelial cell lines (HBECs), as evidenced by anchorage-independent growth. BRG1-KO and CS produced additive to synergistic effects on sensitivity to transformation that differed across HBECs. RNA-seq analysis revealed that BRG1-KO significantly changed the expression of over 8500 genes on average, impacting lung development, function, damage repair, and cancer pathways, including axonal guidance, pulmonary wound healing, and epithelial-to-mesenchymal transition (EMT). BRG1-KO also led to the hypermethylation of >47,000 promoter CpGs within ~9500 genes on average in different HBECs, including silencing of epithelial genes involved in EMT and tumor suppressor genes. BRG1-KO also moderately increased the in vitro and in vivo sensitivity of NSCLC cells to some epigenetic drugs.</p><p><strong>Conclusions: </strong>BRG1-LOF is frequent in NSCLC; can drive the transformation of lung epithelial cells such that they acquire properties of pre-malignant cells, indicating a potential role in lung cancer initiation; and sensitizes lung tumors to epigenetic therapy.</p>\",\"PeriodicalId\":9681,\"journal\":{\"name\":\"Cancers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468026/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancers\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/cancers17183092\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17183092","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
BRG1 Loss Is Frequent in Lung Cancer and Transforms Lung Epithelial Cells via Transcriptional and Epigenetic Reprograming.
Background/objectives: The BRG1 loss-of-function (LOF) mutation is found in ~10% of non-small cell lung cancer (NSCLC) cases, but its role in lung tumorigenesis is unclear and so it is investigated in this study.
Methods: BRG1-knockout (KO) lines were generated from various non-malignant, pre-malignant, and malignant human lung epithelium-derived cell lines using CRISPR. The effects of BRG1-KO on cell growth, the transcriptome, the methylome, and epigenetic therapy were compared with those of wild-type (BRG1-WT) isogenic controls using standard in vitro and in vivo assays.
Results: The BRG1 protein was expressed in all non-/pre-malignant lung epithelial cells but lost in 47% (14/30) of NSCLC cell lines. BRG1-KO and cigarette smoke (CS) exposure individually transformed human bronchial epithelial cell lines (HBECs), as evidenced by anchorage-independent growth. BRG1-KO and CS produced additive to synergistic effects on sensitivity to transformation that differed across HBECs. RNA-seq analysis revealed that BRG1-KO significantly changed the expression of over 8500 genes on average, impacting lung development, function, damage repair, and cancer pathways, including axonal guidance, pulmonary wound healing, and epithelial-to-mesenchymal transition (EMT). BRG1-KO also led to the hypermethylation of >47,000 promoter CpGs within ~9500 genes on average in different HBECs, including silencing of epithelial genes involved in EMT and tumor suppressor genes. BRG1-KO also moderately increased the in vitro and in vivo sensitivity of NSCLC cells to some epigenetic drugs.
Conclusions: BRG1-LOF is frequent in NSCLC; can drive the transformation of lung epithelial cells such that they acquire properties of pre-malignant cells, indicating a potential role in lung cancer initiation; and sensitizes lung tumors to epigenetic therapy.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.