Ozgen Safak, Mehmet Tolga Hekim, Tolga Cakmak, Fatih Demir, Kursat Demir
{"title":"基于深度学习的心音信号检测方法提高心血管疾病检测性能","authors":"Ozgen Safak, Mehmet Tolga Hekim, Tolga Cakmak, Fatih Demir, Kursat Demir","doi":"10.3390/diagnostics15182379","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Cardiovascular diseases are among the leading causes of death worldwide. Early diagnosis of these conditions minimizes the risk of future death. Listening to heart sounds with a stethoscope is one of the easiest and fastest methods for diagnosing heart conditions. While heart sounds are a quick and easy diagnostic method, they require significant expert interpretation. Recently, artificial intelligence models trained based on these expert interpretations have become popular in the development of decision support systems. <b>Methods</b>: The proposed approach uses the popular 2016 PhysioNet/CinC Challenge dataset for PCG signals. Spectrogram image transformation was then performed to increase the representativeness of these signals. A deep learning-based model that allows for the simultaneous training of residual and attention blocks and the MLP-mixer model was used for feature extraction. A new algorithm combining the strengths of NCA and ReliefF algorithms was proposed to select the strongest features in the feature set. The SVM algorithm was used for classification. <b>Results</b>: With this proposed approach, over 98% success was achieved in all accuracy, sensitivity, specificity, precision, and F1-score metrics. <b>Conclusions</b>: As a result, an artificial intelligence-based decision support system that detects cardiovascular diseases with high accuracy is presented.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 18","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468874/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving the Detection Performance of Cardiovascular Diseases from Heart Sound Signals with a New Deep Learning-Based Approach.\",\"authors\":\"Ozgen Safak, Mehmet Tolga Hekim, Tolga Cakmak, Fatih Demir, Kursat Demir\",\"doi\":\"10.3390/diagnostics15182379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: Cardiovascular diseases are among the leading causes of death worldwide. Early diagnosis of these conditions minimizes the risk of future death. Listening to heart sounds with a stethoscope is one of the easiest and fastest methods for diagnosing heart conditions. While heart sounds are a quick and easy diagnostic method, they require significant expert interpretation. Recently, artificial intelligence models trained based on these expert interpretations have become popular in the development of decision support systems. <b>Methods</b>: The proposed approach uses the popular 2016 PhysioNet/CinC Challenge dataset for PCG signals. Spectrogram image transformation was then performed to increase the representativeness of these signals. A deep learning-based model that allows for the simultaneous training of residual and attention blocks and the MLP-mixer model was used for feature extraction. A new algorithm combining the strengths of NCA and ReliefF algorithms was proposed to select the strongest features in the feature set. The SVM algorithm was used for classification. <b>Results</b>: With this proposed approach, over 98% success was achieved in all accuracy, sensitivity, specificity, precision, and F1-score metrics. <b>Conclusions</b>: As a result, an artificial intelligence-based decision support system that detects cardiovascular diseases with high accuracy is presented.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468874/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15182379\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15182379","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Improving the Detection Performance of Cardiovascular Diseases from Heart Sound Signals with a New Deep Learning-Based Approach.
Background/Objectives: Cardiovascular diseases are among the leading causes of death worldwide. Early diagnosis of these conditions minimizes the risk of future death. Listening to heart sounds with a stethoscope is one of the easiest and fastest methods for diagnosing heart conditions. While heart sounds are a quick and easy diagnostic method, they require significant expert interpretation. Recently, artificial intelligence models trained based on these expert interpretations have become popular in the development of decision support systems. Methods: The proposed approach uses the popular 2016 PhysioNet/CinC Challenge dataset for PCG signals. Spectrogram image transformation was then performed to increase the representativeness of these signals. A deep learning-based model that allows for the simultaneous training of residual and attention blocks and the MLP-mixer model was used for feature extraction. A new algorithm combining the strengths of NCA and ReliefF algorithms was proposed to select the strongest features in the feature set. The SVM algorithm was used for classification. Results: With this proposed approach, over 98% success was achieved in all accuracy, sensitivity, specificity, precision, and F1-score metrics. Conclusions: As a result, an artificial intelligence-based decision support system that detects cardiovascular diseases with high accuracy is presented.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.