Gang Wang, Zengyaran Yue, Gang Yin, Lifeng Zhu, Wen Zhou, Ruiqian Sun, Tingting Bi, Lin Zhao, Yong Bian, Decai Tang
{"title":"姜黄酚靶向VHL/HIF-1α轴抑制结直肠癌糖酵解驱动的进展。","authors":"Gang Wang, Zengyaran Yue, Gang Yin, Lifeng Zhu, Wen Zhou, Ruiqian Sun, Tingting Bi, Lin Zhao, Yong Bian, Decai Tang","doi":"10.3390/cancers17183000","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Hypoxia-induced glycolysis represents a hallmark of colorectal cancer (CRC) progression and contributes significantly to therapeutic resistance. Curcumol, a natural sesquiterpenoid derived from Curcumae Rhizoma, has demonstrated promising anti-tumor properties. However, its impact on metabolic reprogramming under hypoxic conditions remains largely undefined. <b>Objective</b>: The objective of this study was to elucidate the potential of Curcumol in inhibiting glycolytic reprogramming and impede CRC progression via regulation of the VHL/HIF-1α signaling pathway. <b>Methods</b>: CRC cells and orthotopic mouse models were treated with Curcumol under chemically induced hypoxic conditions. Metabolic alterations were evaluated using Seahorse extracellular flux analysis, Western blot analysis, quantitative real-time PCR (qRT-PCR), immunohistochemistry (IHC) and co-immunoprecipitation (Co-IP). Functional validation of glycolysis and epithelial-mesenchymal transition (EMT) phenotypes was conducted through in vitro and in vivo assays. <b>Results</b>: Curcumol inhibited HIF-1α-mediated metabolic reprogramming by upregulating VHL expression, thereby promoting HIF-1α degradation. This effect led to the downregulation of key glycolytic genes (HK2, LDHA, and GLUT1), decreased glycolytic flux, and lactate production, ultimately suppressing CRC cell proliferation and invasion. The anti-tumor efficacy of Curcumol was validated in both in vitro and in vivo models. Moreover, Curcumol effectively reversed the hypoxia-induced epithelial-mesenchymal transition (EMT) phenotype, suggesting that its metabolic regulatory effects may contribute to reduced metastatic potential. <b>Conclusions</b>: Curcumol suppresses glycolysis and CRC progression by activating the VHL/HIF-1α signaling axis. These findings underscore the potential of Curcumol as a natural metabolic regulator capable of reversing tumor metabolic reprogramming, offering a promising therapeutic strategy for CRC treatment.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 18","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468461/pdf/","citationCount":"0","resultStr":"{\"title\":\"Curcumol Targets the VHL/HIF-1α Axis to Suppress Glycolysis-Driven Progression in Colorectal Cancer.\",\"authors\":\"Gang Wang, Zengyaran Yue, Gang Yin, Lifeng Zhu, Wen Zhou, Ruiqian Sun, Tingting Bi, Lin Zhao, Yong Bian, Decai Tang\",\"doi\":\"10.3390/cancers17183000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background</b>: Hypoxia-induced glycolysis represents a hallmark of colorectal cancer (CRC) progression and contributes significantly to therapeutic resistance. Curcumol, a natural sesquiterpenoid derived from Curcumae Rhizoma, has demonstrated promising anti-tumor properties. However, its impact on metabolic reprogramming under hypoxic conditions remains largely undefined. <b>Objective</b>: The objective of this study was to elucidate the potential of Curcumol in inhibiting glycolytic reprogramming and impede CRC progression via regulation of the VHL/HIF-1α signaling pathway. <b>Methods</b>: CRC cells and orthotopic mouse models were treated with Curcumol under chemically induced hypoxic conditions. Metabolic alterations were evaluated using Seahorse extracellular flux analysis, Western blot analysis, quantitative real-time PCR (qRT-PCR), immunohistochemistry (IHC) and co-immunoprecipitation (Co-IP). Functional validation of glycolysis and epithelial-mesenchymal transition (EMT) phenotypes was conducted through in vitro and in vivo assays. <b>Results</b>: Curcumol inhibited HIF-1α-mediated metabolic reprogramming by upregulating VHL expression, thereby promoting HIF-1α degradation. This effect led to the downregulation of key glycolytic genes (HK2, LDHA, and GLUT1), decreased glycolytic flux, and lactate production, ultimately suppressing CRC cell proliferation and invasion. The anti-tumor efficacy of Curcumol was validated in both in vitro and in vivo models. Moreover, Curcumol effectively reversed the hypoxia-induced epithelial-mesenchymal transition (EMT) phenotype, suggesting that its metabolic regulatory effects may contribute to reduced metastatic potential. <b>Conclusions</b>: Curcumol suppresses glycolysis and CRC progression by activating the VHL/HIF-1α signaling axis. These findings underscore the potential of Curcumol as a natural metabolic regulator capable of reversing tumor metabolic reprogramming, offering a promising therapeutic strategy for CRC treatment.</p>\",\"PeriodicalId\":9681,\"journal\":{\"name\":\"Cancers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468461/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancers\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/cancers17183000\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17183000","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Curcumol Targets the VHL/HIF-1α Axis to Suppress Glycolysis-Driven Progression in Colorectal Cancer.
Background: Hypoxia-induced glycolysis represents a hallmark of colorectal cancer (CRC) progression and contributes significantly to therapeutic resistance. Curcumol, a natural sesquiterpenoid derived from Curcumae Rhizoma, has demonstrated promising anti-tumor properties. However, its impact on metabolic reprogramming under hypoxic conditions remains largely undefined. Objective: The objective of this study was to elucidate the potential of Curcumol in inhibiting glycolytic reprogramming and impede CRC progression via regulation of the VHL/HIF-1α signaling pathway. Methods: CRC cells and orthotopic mouse models were treated with Curcumol under chemically induced hypoxic conditions. Metabolic alterations were evaluated using Seahorse extracellular flux analysis, Western blot analysis, quantitative real-time PCR (qRT-PCR), immunohistochemistry (IHC) and co-immunoprecipitation (Co-IP). Functional validation of glycolysis and epithelial-mesenchymal transition (EMT) phenotypes was conducted through in vitro and in vivo assays. Results: Curcumol inhibited HIF-1α-mediated metabolic reprogramming by upregulating VHL expression, thereby promoting HIF-1α degradation. This effect led to the downregulation of key glycolytic genes (HK2, LDHA, and GLUT1), decreased glycolytic flux, and lactate production, ultimately suppressing CRC cell proliferation and invasion. The anti-tumor efficacy of Curcumol was validated in both in vitro and in vivo models. Moreover, Curcumol effectively reversed the hypoxia-induced epithelial-mesenchymal transition (EMT) phenotype, suggesting that its metabolic regulatory effects may contribute to reduced metastatic potential. Conclusions: Curcumol suppresses glycolysis and CRC progression by activating the VHL/HIF-1α signaling axis. These findings underscore the potential of Curcumol as a natural metabolic regulator capable of reversing tumor metabolic reprogramming, offering a promising therapeutic strategy for CRC treatment.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.