肾上腺病变CT鉴别的新高度及非强化的合理定义。

IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Lichun Liu, Fangmei Zhu, Zongfeng Niu, Zongyu Xie, Dengfa Yang, Jian Wang, Cheng Yan
{"title":"肾上腺病变CT鉴别的新高度及非强化的合理定义。","authors":"Lichun Liu, Fangmei Zhu, Zongfeng Niu, Zongyu Xie, Dengfa Yang, Jian Wang, Cheng Yan","doi":"10.1186/s12880-025-01916-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To explore the stratification and identification of adrenal lipid-poor adenomas (LPAs), adrenal cysts (ACs), and adrenal ganglioneuromas (AGNs) from each other using contrast-enhanced computed tomography (CT).</p><p><strong>Methods: </strong>Pathologically confirmed, 348 patients were categorized into Model 1 (260 LPAs, 34 ACs), Model 2 (260 LPAs, 54 AGNs), and Model 3 (34 ACs, 54 AGNs). Statistical analyses were performed on the differences in the degree of enhancement in the arterial/venous phase (DEap/DEvp) (in HU) and the corresponding graded variables for the arterial/venous phase (GVap/GVvp). Models were evaluated via receiver operating characteristic (ROC) curves, calibration curves, and the Hosmer‒Lemeshow (HL) test.</p><p><strong>Results: </strong>The values of the area under the curve (AUC) for DEap, DEvp, GVap, and GVvp in Models 1-3 were 0.996, 1.000, 0.993, and 0.999; 0.980, 0.978, 0.961, and 0.975; and 0.734, 0.892, 0.725, and 0.883, respectively. The p values of the HL test were 0.984, 1.000, and 0.113, respectively. The DEvp interval values (in HU) for the LPAs, ACs, and AGNs were [4.9, 190.2] HU, [-3.7, 4.2] HU, and [-4.8, 41.8] HU, respectively. The GVap and GVvp ranges for the LPAs, ACs, and AGNs were [1, 6], [0, 2], and [0, 2] and [1, 6], [0, 1], and [0, 5], respectively.</p><p><strong>Conclusions: </strong>DEvp enhanced discrimination in Models 1 and 3, whereas DEap performed better in Model 2. Lesions with DEvp < 4.5 HU are likely represent non-enhancing pathology (e.g., cysts). When both GVap and GVvp are 0, when both GVap and GVvp are [2, 6], and when GVap is [3, 6] and GVvp is 6, LPA, AC, and AGN are excluded.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"374"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466030/pdf/","citationCount":"0","resultStr":"{\"title\":\"New heights in CT differentiation of adrenal lesions and a rational definition of non-enhancement.\",\"authors\":\"Lichun Liu, Fangmei Zhu, Zongfeng Niu, Zongyu Xie, Dengfa Yang, Jian Wang, Cheng Yan\",\"doi\":\"10.1186/s12880-025-01916-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To explore the stratification and identification of adrenal lipid-poor adenomas (LPAs), adrenal cysts (ACs), and adrenal ganglioneuromas (AGNs) from each other using contrast-enhanced computed tomography (CT).</p><p><strong>Methods: </strong>Pathologically confirmed, 348 patients were categorized into Model 1 (260 LPAs, 34 ACs), Model 2 (260 LPAs, 54 AGNs), and Model 3 (34 ACs, 54 AGNs). Statistical analyses were performed on the differences in the degree of enhancement in the arterial/venous phase (DEap/DEvp) (in HU) and the corresponding graded variables for the arterial/venous phase (GVap/GVvp). Models were evaluated via receiver operating characteristic (ROC) curves, calibration curves, and the Hosmer‒Lemeshow (HL) test.</p><p><strong>Results: </strong>The values of the area under the curve (AUC) for DEap, DEvp, GVap, and GVvp in Models 1-3 were 0.996, 1.000, 0.993, and 0.999; 0.980, 0.978, 0.961, and 0.975; and 0.734, 0.892, 0.725, and 0.883, respectively. The p values of the HL test were 0.984, 1.000, and 0.113, respectively. The DEvp interval values (in HU) for the LPAs, ACs, and AGNs were [4.9, 190.2] HU, [-3.7, 4.2] HU, and [-4.8, 41.8] HU, respectively. The GVap and GVvp ranges for the LPAs, ACs, and AGNs were [1, 6], [0, 2], and [0, 2] and [1, 6], [0, 1], and [0, 5], respectively.</p><p><strong>Conclusions: </strong>DEvp enhanced discrimination in Models 1 and 3, whereas DEap performed better in Model 2. Lesions with DEvp < 4.5 HU are likely represent non-enhancing pathology (e.g., cysts). When both GVap and GVvp are 0, when both GVap and GVvp are [2, 6], and when GVap is [3, 6] and GVvp is 6, LPA, AC, and AGN are excluded.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"25 1\",\"pages\":\"374\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466030/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-025-01916-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01916-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:探讨利用对比增强计算机断层扫描(CT)对肾上腺低脂腺瘤(LPAs)、肾上腺囊肿(ACs)和肾上腺神经节神经瘤(agn)的分层和鉴别。方法:经病理证实,348例患者分为模型1 (lpa 260例,ACs 34例)、模型2 (lpa 260例,agn 54例)、模型3 (ACs 34例,agn 54例)。统计分析两组动脉/静脉期增强程度(DEap/DEvp) (in HU)和相应的动脉/静脉期分级变量(GVap/GVvp)的差异。通过受试者工作特征(ROC)曲线、校正曲线和Hosmer-Lemeshow (HL)检验对模型进行评价。结果:模型1-3中DEap、DEvp、GVap、GVvp的曲线下面积(AUC)分别为0.996、1.000、0.993、0.999;0.980, 0.978, 0.961, 0.975;和0.734、0.892、0.725、0.883。HL检验的p值分别为0.984、1.000和0.113。lpa、ac和agn的DEvp间隔值(单位为HU)分别为[4.9,190.2]HU、[-3.7,4.2]HU和[-4.8,41.8]HU。lpa、ac和agn的GVap和GVvp范围分别为[1,6]、[0,2]、[0,2]和[1,6]、[0,1]、[0,5]。结论:DEvp在模型1和模型3中增强了识别,而DEap在模型2中表现更好。临床试验号:不适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New heights in CT differentiation of adrenal lesions and a rational definition of non-enhancement.

Background: To explore the stratification and identification of adrenal lipid-poor adenomas (LPAs), adrenal cysts (ACs), and adrenal ganglioneuromas (AGNs) from each other using contrast-enhanced computed tomography (CT).

Methods: Pathologically confirmed, 348 patients were categorized into Model 1 (260 LPAs, 34 ACs), Model 2 (260 LPAs, 54 AGNs), and Model 3 (34 ACs, 54 AGNs). Statistical analyses were performed on the differences in the degree of enhancement in the arterial/venous phase (DEap/DEvp) (in HU) and the corresponding graded variables for the arterial/venous phase (GVap/GVvp). Models were evaluated via receiver operating characteristic (ROC) curves, calibration curves, and the Hosmer‒Lemeshow (HL) test.

Results: The values of the area under the curve (AUC) for DEap, DEvp, GVap, and GVvp in Models 1-3 were 0.996, 1.000, 0.993, and 0.999; 0.980, 0.978, 0.961, and 0.975; and 0.734, 0.892, 0.725, and 0.883, respectively. The p values of the HL test were 0.984, 1.000, and 0.113, respectively. The DEvp interval values (in HU) for the LPAs, ACs, and AGNs were [4.9, 190.2] HU, [-3.7, 4.2] HU, and [-4.8, 41.8] HU, respectively. The GVap and GVvp ranges for the LPAs, ACs, and AGNs were [1, 6], [0, 2], and [0, 2] and [1, 6], [0, 1], and [0, 5], respectively.

Conclusions: DEvp enhanced discrimination in Models 1 and 3, whereas DEap performed better in Model 2. Lesions with DEvp < 4.5 HU are likely represent non-enhancing pathology (e.g., cysts). When both GVap and GVvp are 0, when both GVap and GVvp are [2, 6], and when GVap is [3, 6] and GVvp is 6, LPA, AC, and AGN are excluded.

Clinical trial number: Not applicable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信