Haotong He, Haoyang Yu, Hefeng Zhou, Guozhen Cui, Min Shao
{"title":"作为铁下垂调节剂的天然化合物:乳腺癌的机制见解和治疗前景。","authors":"Haotong He, Haoyang Yu, Hefeng Zhou, Guozhen Cui, Min Shao","doi":"10.3390/biom15091308","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is the most prevalent malignant tumor in women. However, its clinical management is severely hindered by three interconnected challenges that limit long-term survival: treatment resistance, metastatic dissemination, and immunological evasion. Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a novel strategy to overcome these obstacles. Furthermore, it demonstrates significant potential in inhibiting tumor metastasis and modifying the anti-tumor immune microenvironment, which provides a novel approach to address the core dilemma of breast cancer. Natural products have emerged as significant sources of ferroptosis inducers owing to their distinctive chemical variety, multi-target regulatory capabilities, and acceptable safety profile. Data increasingly indicates that several natural compounds can function as effective inducers or sensitizers of ferroptosis cell death. This review provides a thorough evaluation of current progress in harnessing natural ingredients to trigger ferroptosis for breast cancer treatment. It also elucidates the fundamental molecular mechanisms. Furthermore, it encapsulates therapeutic efficacy in preclinical models. Ultimately, it rigorously evaluates existing constraints and delineates potential and barriers for clinical translation.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467155/pdf/","citationCount":"0","resultStr":"{\"title\":\"Natural Compounds as Modulators of Ferroptosis: Mechanistic Insights and Therapeutic Prospects in Breast Cancer.\",\"authors\":\"Haotong He, Haoyang Yu, Hefeng Zhou, Guozhen Cui, Min Shao\",\"doi\":\"10.3390/biom15091308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is the most prevalent malignant tumor in women. However, its clinical management is severely hindered by three interconnected challenges that limit long-term survival: treatment resistance, metastatic dissemination, and immunological evasion. Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a novel strategy to overcome these obstacles. Furthermore, it demonstrates significant potential in inhibiting tumor metastasis and modifying the anti-tumor immune microenvironment, which provides a novel approach to address the core dilemma of breast cancer. Natural products have emerged as significant sources of ferroptosis inducers owing to their distinctive chemical variety, multi-target regulatory capabilities, and acceptable safety profile. Data increasingly indicates that several natural compounds can function as effective inducers or sensitizers of ferroptosis cell death. This review provides a thorough evaluation of current progress in harnessing natural ingredients to trigger ferroptosis for breast cancer treatment. It also elucidates the fundamental molecular mechanisms. Furthermore, it encapsulates therapeutic efficacy in preclinical models. Ultimately, it rigorously evaluates existing constraints and delineates potential and barriers for clinical translation.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15091308\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091308","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Natural Compounds as Modulators of Ferroptosis: Mechanistic Insights and Therapeutic Prospects in Breast Cancer.
Breast cancer is the most prevalent malignant tumor in women. However, its clinical management is severely hindered by three interconnected challenges that limit long-term survival: treatment resistance, metastatic dissemination, and immunological evasion. Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a novel strategy to overcome these obstacles. Furthermore, it demonstrates significant potential in inhibiting tumor metastasis and modifying the anti-tumor immune microenvironment, which provides a novel approach to address the core dilemma of breast cancer. Natural products have emerged as significant sources of ferroptosis inducers owing to their distinctive chemical variety, multi-target regulatory capabilities, and acceptable safety profile. Data increasingly indicates that several natural compounds can function as effective inducers or sensitizers of ferroptosis cell death. This review provides a thorough evaluation of current progress in harnessing natural ingredients to trigger ferroptosis for breast cancer treatment. It also elucidates the fundamental molecular mechanisms. Furthermore, it encapsulates therapeutic efficacy in preclinical models. Ultimately, it rigorously evaluates existing constraints and delineates potential and barriers for clinical translation.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.