Muhammad Rashad, Alessia Ricci, Serena Pilato, Amelia Cataldi, Marwa Balaha, Susi Zara
{"title":"自然的协同作用:蜗牛黏液及其主要成分乙醇酸对角质形成细胞的细胞和分子评价,内皮细胞的初步证据。","authors":"Muhammad Rashad, Alessia Ricci, Serena Pilato, Amelia Cataldi, Marwa Balaha, Susi Zara","doi":"10.3390/biom15091302","DOIUrl":null,"url":null,"abstract":"<p><p>Snail slime (SS) is a natural secretion rich in bioactive components such as glycoproteins, hyaluronic acid, glycolic acid (GA), and antimicrobial peptides. GA, a key component of SS, is known for its exfoliative properties. This study investigates SS's effects on keratinocytes (HaCaT) and endothelial cells (ECs), comparing its properties to those of GA. HaCaT cell viability and cytotoxicity, ROS release, and inflammation-related signaling (PI3K/Akt/NF-κB and COX-2 gene expression) were assessed. Extracellular matrix (ECM) remodeling was evaluated by gene expression of MMPs. In ECs, a preliminary evaluation of SS's effect was conducted in terms of cell viability and migration. Results demonstrated that SS is well tolerated by keratinocytes whereas GA exhibits cytotoxicity, suggesting that SS's natural composition mitigates GA's adverse effects. SS induced a controlled, brief inflammatory response, via the PI3K/Akt/NF-κB pathway, unlike GA, responsible for stronger and sustained pro-inflammatory events. Additionally, SS, through the upregulation of MMPs, contributes to ECM remodeling. In ECs, SS preserves viability and also enhances migration, thus supporting wound healing. These findings highlight SS's ability to balance pro-inflammatory events, making it a promising candidate for advanced dermatological applications, underscoring SS's potential in modulating key cellular signaling pathways, and supporting its future therapeutic prospects in wound healing.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467389/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nature's Synergy: Cellular and Molecular Evaluation of Snail Slime and Its Principal Component, Glycolic Acid, on Keratinocytes, with Preliminary Evidence from Endothelial Cells.\",\"authors\":\"Muhammad Rashad, Alessia Ricci, Serena Pilato, Amelia Cataldi, Marwa Balaha, Susi Zara\",\"doi\":\"10.3390/biom15091302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Snail slime (SS) is a natural secretion rich in bioactive components such as glycoproteins, hyaluronic acid, glycolic acid (GA), and antimicrobial peptides. GA, a key component of SS, is known for its exfoliative properties. This study investigates SS's effects on keratinocytes (HaCaT) and endothelial cells (ECs), comparing its properties to those of GA. HaCaT cell viability and cytotoxicity, ROS release, and inflammation-related signaling (PI3K/Akt/NF-κB and COX-2 gene expression) were assessed. Extracellular matrix (ECM) remodeling was evaluated by gene expression of MMPs. In ECs, a preliminary evaluation of SS's effect was conducted in terms of cell viability and migration. Results demonstrated that SS is well tolerated by keratinocytes whereas GA exhibits cytotoxicity, suggesting that SS's natural composition mitigates GA's adverse effects. SS induced a controlled, brief inflammatory response, via the PI3K/Akt/NF-κB pathway, unlike GA, responsible for stronger and sustained pro-inflammatory events. Additionally, SS, through the upregulation of MMPs, contributes to ECM remodeling. In ECs, SS preserves viability and also enhances migration, thus supporting wound healing. These findings highlight SS's ability to balance pro-inflammatory events, making it a promising candidate for advanced dermatological applications, underscoring SS's potential in modulating key cellular signaling pathways, and supporting its future therapeutic prospects in wound healing.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467389/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15091302\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091302","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Nature's Synergy: Cellular and Molecular Evaluation of Snail Slime and Its Principal Component, Glycolic Acid, on Keratinocytes, with Preliminary Evidence from Endothelial Cells.
Snail slime (SS) is a natural secretion rich in bioactive components such as glycoproteins, hyaluronic acid, glycolic acid (GA), and antimicrobial peptides. GA, a key component of SS, is known for its exfoliative properties. This study investigates SS's effects on keratinocytes (HaCaT) and endothelial cells (ECs), comparing its properties to those of GA. HaCaT cell viability and cytotoxicity, ROS release, and inflammation-related signaling (PI3K/Akt/NF-κB and COX-2 gene expression) were assessed. Extracellular matrix (ECM) remodeling was evaluated by gene expression of MMPs. In ECs, a preliminary evaluation of SS's effect was conducted in terms of cell viability and migration. Results demonstrated that SS is well tolerated by keratinocytes whereas GA exhibits cytotoxicity, suggesting that SS's natural composition mitigates GA's adverse effects. SS induced a controlled, brief inflammatory response, via the PI3K/Akt/NF-κB pathway, unlike GA, responsible for stronger and sustained pro-inflammatory events. Additionally, SS, through the upregulation of MMPs, contributes to ECM remodeling. In ECs, SS preserves viability and also enhances migration, thus supporting wound healing. These findings highlight SS's ability to balance pro-inflammatory events, making it a promising candidate for advanced dermatological applications, underscoring SS's potential in modulating key cellular signaling pathways, and supporting its future therapeutic prospects in wound healing.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.