{"title":"天然产物衍生药物:其生物学机制的结构见解。","authors":"Yujeong Choi, Younghyun Kim, Hye Joon Boo, Danbi Yoon, Jeong Seok Cha, Jiho Yoo","doi":"10.3390/biom15091303","DOIUrl":null,"url":null,"abstract":"<p><p>Natural product-derived drugs represent a cornerstone of modern pharmacotherapy, with many serving as essential therapeutic agents across diverse medical conditions. Recent advances in structural biology have provided unprecedented insights into the molecular mechanisms underlying their biological activities. This review presents a comprehensive structural analysis of five representative natural product-derived drugs: digoxin, simvastatin, morphine, paclitaxel, and penicillin. Through an examination of high-resolution crystal structures and cryo-electron microscopy (cryo-EM) data, we elucidate how these compounds interact with their respective protein targets and modulate biological functions. The structural data reveal diverse binding mechanisms-ranging from competitive inhibition and covalent modification to allosteric modulation via conformational selection and induced fit-demonstrating how natural products achieve their therapeutic effects through precise molecular recognition. These structural insights provide a molecular foundation for understanding natural product pharmacology and offer valuable guidance for structure-based drug design approaches in developing next-generation therapeutics.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467776/pdf/","citationCount":"0","resultStr":"{\"title\":\"Natural Product-Derived Drugs: Structural Insights into Their Biological Mechanisms.\",\"authors\":\"Yujeong Choi, Younghyun Kim, Hye Joon Boo, Danbi Yoon, Jeong Seok Cha, Jiho Yoo\",\"doi\":\"10.3390/biom15091303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural product-derived drugs represent a cornerstone of modern pharmacotherapy, with many serving as essential therapeutic agents across diverse medical conditions. Recent advances in structural biology have provided unprecedented insights into the molecular mechanisms underlying their biological activities. This review presents a comprehensive structural analysis of five representative natural product-derived drugs: digoxin, simvastatin, morphine, paclitaxel, and penicillin. Through an examination of high-resolution crystal structures and cryo-electron microscopy (cryo-EM) data, we elucidate how these compounds interact with their respective protein targets and modulate biological functions. The structural data reveal diverse binding mechanisms-ranging from competitive inhibition and covalent modification to allosteric modulation via conformational selection and induced fit-demonstrating how natural products achieve their therapeutic effects through precise molecular recognition. These structural insights provide a molecular foundation for understanding natural product pharmacology and offer valuable guidance for structure-based drug design approaches in developing next-generation therapeutics.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467776/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15091303\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091303","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Natural Product-Derived Drugs: Structural Insights into Their Biological Mechanisms.
Natural product-derived drugs represent a cornerstone of modern pharmacotherapy, with many serving as essential therapeutic agents across diverse medical conditions. Recent advances in structural biology have provided unprecedented insights into the molecular mechanisms underlying their biological activities. This review presents a comprehensive structural analysis of five representative natural product-derived drugs: digoxin, simvastatin, morphine, paclitaxel, and penicillin. Through an examination of high-resolution crystal structures and cryo-electron microscopy (cryo-EM) data, we elucidate how these compounds interact with their respective protein targets and modulate biological functions. The structural data reveal diverse binding mechanisms-ranging from competitive inhibition and covalent modification to allosteric modulation via conformational selection and induced fit-demonstrating how natural products achieve their therapeutic effects through precise molecular recognition. These structural insights provide a molecular foundation for understanding natural product pharmacology and offer valuable guidance for structure-based drug design approaches in developing next-generation therapeutics.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.