Weibo Gao, Yanyan Zhang, Bo Gao, Yuwei Xia, Wenbin Liang, Quanxin Yang, Feng Shi, Tuo He, Guangxu Han, Xiaohui Li, Xuan Su, Yuelang Zhang
{"title":"无对比定量MRI全乳分割的自动深度学习方法。","authors":"Weibo Gao, Yanyan Zhang, Bo Gao, Yuwei Xia, Wenbin Liang, Quanxin Yang, Feng Shi, Tuo He, Guangxu Han, Xiaohui Li, Xuan Su, Yuelang Zhang","doi":"10.1186/s12880-025-01928-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To develop a deep learning segmentation method utilizing the nnU-Net architecture for fully automated whole-breast segmentation based on diffusion-weighted imaging (DWI) and synthetic MRI (SyMRI) images.</p><p><strong>Methods: </strong>A total of 98 patients with 196 breasts were evaluated. All patients underwent 3.0T magnetic resonance (MR) examinations, which incorporated DWI and SyMRI techniques. The ground truth for breast segmentation was established through a manual, slice-by-slice approach performed by two experienced radiologists. The U-Net and nnU-Net deep learning algorithms were employed to segment the whole-breast. Performance was evaluated using various metrics, including the Dice Similarity Coefficient (DSC), accuracy, and Pearson's correlation coefficient.</p><p><strong>Results: </strong>For DWI and proton density (PD) of SyMRI, the nnU-Net outperformed the U-Net achieving the higher DSC in both the testing set (DWI, 0.930 ± 0.029 vs. 0.785 ± 0.161; PD, 0.969 ± 0.010 vs. 0.936 ± 0.018) and independent testing set (DWI, 0.953 ± 0.019 vs. 0.789 ± 0.148; PD, 0.976 ± 0.008 vs. 0.939 ± 0.018). The PD of SyMRI exhibited better performance than DWI, attaining the highest DSC and accuracy. The correlation coefficients R² for nnU-Net were 0.99 ~ 1.00 for DWI and PD, significantly surpassing the performance of U-Net.</p><p><strong>Conclusion: </strong>The nnU-Net exhibited exceptional segmentation performance for fully automated breast segmentation of contrast-free quantitative images. This method serves as an effective tool for processing large-scale clinical datasets and represents a significant advancement toward computer-aided quantitative analysis of breast DWI and SyMRI images.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"385"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465285/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated deep learning method for whole-breast segmentation in contrast-free quantitative MRI.\",\"authors\":\"Weibo Gao, Yanyan Zhang, Bo Gao, Yuwei Xia, Wenbin Liang, Quanxin Yang, Feng Shi, Tuo He, Guangxu Han, Xiaohui Li, Xuan Su, Yuelang Zhang\",\"doi\":\"10.1186/s12880-025-01928-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To develop a deep learning segmentation method utilizing the nnU-Net architecture for fully automated whole-breast segmentation based on diffusion-weighted imaging (DWI) and synthetic MRI (SyMRI) images.</p><p><strong>Methods: </strong>A total of 98 patients with 196 breasts were evaluated. All patients underwent 3.0T magnetic resonance (MR) examinations, which incorporated DWI and SyMRI techniques. The ground truth for breast segmentation was established through a manual, slice-by-slice approach performed by two experienced radiologists. The U-Net and nnU-Net deep learning algorithms were employed to segment the whole-breast. Performance was evaluated using various metrics, including the Dice Similarity Coefficient (DSC), accuracy, and Pearson's correlation coefficient.</p><p><strong>Results: </strong>For DWI and proton density (PD) of SyMRI, the nnU-Net outperformed the U-Net achieving the higher DSC in both the testing set (DWI, 0.930 ± 0.029 vs. 0.785 ± 0.161; PD, 0.969 ± 0.010 vs. 0.936 ± 0.018) and independent testing set (DWI, 0.953 ± 0.019 vs. 0.789 ± 0.148; PD, 0.976 ± 0.008 vs. 0.939 ± 0.018). The PD of SyMRI exhibited better performance than DWI, attaining the highest DSC and accuracy. The correlation coefficients R² for nnU-Net were 0.99 ~ 1.00 for DWI and PD, significantly surpassing the performance of U-Net.</p><p><strong>Conclusion: </strong>The nnU-Net exhibited exceptional segmentation performance for fully automated breast segmentation of contrast-free quantitative images. This method serves as an effective tool for processing large-scale clinical datasets and represents a significant advancement toward computer-aided quantitative analysis of breast DWI and SyMRI images.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"25 1\",\"pages\":\"385\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465285/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-025-01928-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01928-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Automated deep learning method for whole-breast segmentation in contrast-free quantitative MRI.
Background: To develop a deep learning segmentation method utilizing the nnU-Net architecture for fully automated whole-breast segmentation based on diffusion-weighted imaging (DWI) and synthetic MRI (SyMRI) images.
Methods: A total of 98 patients with 196 breasts were evaluated. All patients underwent 3.0T magnetic resonance (MR) examinations, which incorporated DWI and SyMRI techniques. The ground truth for breast segmentation was established through a manual, slice-by-slice approach performed by two experienced radiologists. The U-Net and nnU-Net deep learning algorithms were employed to segment the whole-breast. Performance was evaluated using various metrics, including the Dice Similarity Coefficient (DSC), accuracy, and Pearson's correlation coefficient.
Results: For DWI and proton density (PD) of SyMRI, the nnU-Net outperformed the U-Net achieving the higher DSC in both the testing set (DWI, 0.930 ± 0.029 vs. 0.785 ± 0.161; PD, 0.969 ± 0.010 vs. 0.936 ± 0.018) and independent testing set (DWI, 0.953 ± 0.019 vs. 0.789 ± 0.148; PD, 0.976 ± 0.008 vs. 0.939 ± 0.018). The PD of SyMRI exhibited better performance than DWI, attaining the highest DSC and accuracy. The correlation coefficients R² for nnU-Net were 0.99 ~ 1.00 for DWI and PD, significantly surpassing the performance of U-Net.
Conclusion: The nnU-Net exhibited exceptional segmentation performance for fully automated breast segmentation of contrast-free quantitative images. This method serves as an effective tool for processing large-scale clinical datasets and represents a significant advancement toward computer-aided quantitative analysis of breast DWI and SyMRI images.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.