MiR-92通过胶质细胞Vha55调控突触发育

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-09-18 DOI:10.3390/biom15091330
Simon M Moe, Alicia Taylor, Alan P Robertson, David Van Vactor, Elizabeth M McNeill
{"title":"MiR-92通过胶质细胞Vha55调控突触发育","authors":"Simon M Moe, Alicia Taylor, Alan P Robertson, David Van Vactor, Elizabeth M McNeill","doi":"10.3390/biom15091330","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) have emerged as important biomarkers for complex neurological conditions. Modifications in synaptic morphology characterize several of these disease states, indicating a possible role of miRNA in modulating synaptic formation and plasticity. Within the third-instar larvae of Drosophila melanogaster, we uncovered a functional role for highly human-conserved miR-92 in synaptogenesis of the glutamatergic peripheral nervous system. Loss of miR-92 results in underdeveloped synaptic architecture, coinciding with significantly reduced physiological activity. We demonstrate a novel role for miR-92 glial-specific expression to support synaptic growth function and plasticity. Modifications of miR-92 within glial tissue result in aberrant glial barrier properties, including an increased uptake of external dyes. Within the glia, miR-92 regulates a V-ATPase subunit (Vha55), impairing the glial cells from forming appropriate insulating layers around the nervous system. These modifications may impact how the nervous system adapts to its environment, increasing immature 'ghost bouton' budding and impairing responses to changes in environmental conditions. Our work highlights the importance of glial-specific miR-92 on synaptic development, affecting glial health and function through its downstream target Vha55, and demonstrates a novel mechanism for glia in synaptogenesis and homeostatic plasticity.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467677/pdf/","citationCount":"0","resultStr":"{\"title\":\"MiR-92 Controls Synaptic Development Through Glial Vha55 Regulation.\",\"authors\":\"Simon M Moe, Alicia Taylor, Alan P Robertson, David Van Vactor, Elizabeth M McNeill\",\"doi\":\"10.3390/biom15091330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) have emerged as important biomarkers for complex neurological conditions. Modifications in synaptic morphology characterize several of these disease states, indicating a possible role of miRNA in modulating synaptic formation and plasticity. Within the third-instar larvae of Drosophila melanogaster, we uncovered a functional role for highly human-conserved miR-92 in synaptogenesis of the glutamatergic peripheral nervous system. Loss of miR-92 results in underdeveloped synaptic architecture, coinciding with significantly reduced physiological activity. We demonstrate a novel role for miR-92 glial-specific expression to support synaptic growth function and plasticity. Modifications of miR-92 within glial tissue result in aberrant glial barrier properties, including an increased uptake of external dyes. Within the glia, miR-92 regulates a V-ATPase subunit (Vha55), impairing the glial cells from forming appropriate insulating layers around the nervous system. These modifications may impact how the nervous system adapts to its environment, increasing immature 'ghost bouton' budding and impairing responses to changes in environmental conditions. Our work highlights the importance of glial-specific miR-92 on synaptic development, affecting glial health and function through its downstream target Vha55, and demonstrates a novel mechanism for glia in synaptogenesis and homeostatic plasticity.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467677/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15091330\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091330","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

MicroRNAs (miRNAs)已成为复杂神经系统疾病的重要生物标志物。突触形态的改变是这些疾病状态的特征,表明miRNA可能在调节突触形成和可塑性方面发挥作用。在黑腹果蝇的三龄幼虫中,我们发现了高度人类保守的miR-92在谷氨酸能周围神经系统突触发生中的功能作用。miR-92的缺失导致突触结构不发达,与生理活动显著降低相一致。我们证明了miR-92胶质特异性表达在支持突触生长功能和可塑性方面的新作用。胶质组织内miR-92的修饰导致异常的胶质屏障特性,包括增加对外部染料的摄取。在胶质细胞内,miR-92调节v - atp酶亚基(Vha55),损害胶质细胞在神经系统周围形成适当的绝缘层。这些变化可能会影响神经系统对环境的适应,增加未成熟的“鬼芽”萌芽,损害对环境条件变化的反应。我们的工作强调了胶质细胞特异性miR-92对突触发育的重要性,通过其下游靶点Vha55影响胶质细胞的健康和功能,并展示了胶质细胞在突触发生和稳态可塑性中的新机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MiR-92 Controls Synaptic Development Through Glial Vha55 Regulation.

MicroRNAs (miRNAs) have emerged as important biomarkers for complex neurological conditions. Modifications in synaptic morphology characterize several of these disease states, indicating a possible role of miRNA in modulating synaptic formation and plasticity. Within the third-instar larvae of Drosophila melanogaster, we uncovered a functional role for highly human-conserved miR-92 in synaptogenesis of the glutamatergic peripheral nervous system. Loss of miR-92 results in underdeveloped synaptic architecture, coinciding with significantly reduced physiological activity. We demonstrate a novel role for miR-92 glial-specific expression to support synaptic growth function and plasticity. Modifications of miR-92 within glial tissue result in aberrant glial barrier properties, including an increased uptake of external dyes. Within the glia, miR-92 regulates a V-ATPase subunit (Vha55), impairing the glial cells from forming appropriate insulating layers around the nervous system. These modifications may impact how the nervous system adapts to its environment, increasing immature 'ghost bouton' budding and impairing responses to changes in environmental conditions. Our work highlights the importance of glial-specific miR-92 on synaptic development, affecting glial health and function through its downstream target Vha55, and demonstrates a novel mechanism for glia in synaptogenesis and homeostatic plasticity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信