Hakan Kayir, Larissa Kouroukis, Iman Aziz, Jibran Younis Khokhar
{"title":"四氢大麻素(THCV)在大鼠药物识别任务中的剂量依赖性阻断或替代四氢大麻酚(THC)。","authors":"Hakan Kayir, Larissa Kouroukis, Iman Aziz, Jibran Younis Khokhar","doi":"10.3390/biom15091329","DOIUrl":null,"url":null,"abstract":"<p><p>Delta-9-Tetrahydrocannabivarin (THCV), a naturally occurring cannabinoid and structural analog of THC, exhibits a dual pharmacological profile as a CB1 receptor agonist/antagonist and a partial CB2 agonist. This study evaluated the effects of THCV in a THC discrimination model in rats. Male Sprague-Dawley rats (<i>n</i> = 16, 300-340 g, PND60) were trained under a fixed ratio 20 (FR20) schedule to discriminate THC (3 mg/kg) from vehicle. Substitution tests were conducted with THC (0.325-3 mg/kg), THCV (0.75-6 mg/kg), and THC-THCV combinations. THCV produced an inverted U-shaped substitution curve, significantly differing from vehicle (<i>p</i> = 0.008). At 3 mg/kg, THCV partially substituted for THC (54.6% ± 17.82, <i>p</i> = 0.003). Response rate significantly increased during the substitution test with 3 mg/kg of THCV (<i>p</i> = 0.042). THCV (6 mg/kg) reversed THC (0.75 mg/kg)-induced responding (<i>p</i> = 0.040), with no significant change in response rate (<i>p</i> = 0.247). However, THCV combined with THC (1.5 mg/kg) affected response rates (<i>p</i> = 0.012), with 6 mg/kg significantly reducing rates vs. 3 mg/kg (<i>p</i> = 0.013). Blood THC and 11-OH-THC levels remained unchanged when THC was combined with THCV. The findings suggest THCV can partially mimic or block THC's discriminative effects in a dose-dependent manner, possibly acting as a partial CB1 agonist.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467664/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tetrahydrocannabivarin (THCV) Dose Dependently Blocks or Substitutes for Tetrahydrocannabinol (THC) in a Drug Discrimination Task in Rats.\",\"authors\":\"Hakan Kayir, Larissa Kouroukis, Iman Aziz, Jibran Younis Khokhar\",\"doi\":\"10.3390/biom15091329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Delta-9-Tetrahydrocannabivarin (THCV), a naturally occurring cannabinoid and structural analog of THC, exhibits a dual pharmacological profile as a CB1 receptor agonist/antagonist and a partial CB2 agonist. This study evaluated the effects of THCV in a THC discrimination model in rats. Male Sprague-Dawley rats (<i>n</i> = 16, 300-340 g, PND60) were trained under a fixed ratio 20 (FR20) schedule to discriminate THC (3 mg/kg) from vehicle. Substitution tests were conducted with THC (0.325-3 mg/kg), THCV (0.75-6 mg/kg), and THC-THCV combinations. THCV produced an inverted U-shaped substitution curve, significantly differing from vehicle (<i>p</i> = 0.008). At 3 mg/kg, THCV partially substituted for THC (54.6% ± 17.82, <i>p</i> = 0.003). Response rate significantly increased during the substitution test with 3 mg/kg of THCV (<i>p</i> = 0.042). THCV (6 mg/kg) reversed THC (0.75 mg/kg)-induced responding (<i>p</i> = 0.040), with no significant change in response rate (<i>p</i> = 0.247). However, THCV combined with THC (1.5 mg/kg) affected response rates (<i>p</i> = 0.012), with 6 mg/kg significantly reducing rates vs. 3 mg/kg (<i>p</i> = 0.013). Blood THC and 11-OH-THC levels remained unchanged when THC was combined with THCV. The findings suggest THCV can partially mimic or block THC's discriminative effects in a dose-dependent manner, possibly acting as a partial CB1 agonist.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467664/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15091329\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091329","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tetrahydrocannabivarin (THCV) Dose Dependently Blocks or Substitutes for Tetrahydrocannabinol (THC) in a Drug Discrimination Task in Rats.
Delta-9-Tetrahydrocannabivarin (THCV), a naturally occurring cannabinoid and structural analog of THC, exhibits a dual pharmacological profile as a CB1 receptor agonist/antagonist and a partial CB2 agonist. This study evaluated the effects of THCV in a THC discrimination model in rats. Male Sprague-Dawley rats (n = 16, 300-340 g, PND60) were trained under a fixed ratio 20 (FR20) schedule to discriminate THC (3 mg/kg) from vehicle. Substitution tests were conducted with THC (0.325-3 mg/kg), THCV (0.75-6 mg/kg), and THC-THCV combinations. THCV produced an inverted U-shaped substitution curve, significantly differing from vehicle (p = 0.008). At 3 mg/kg, THCV partially substituted for THC (54.6% ± 17.82, p = 0.003). Response rate significantly increased during the substitution test with 3 mg/kg of THCV (p = 0.042). THCV (6 mg/kg) reversed THC (0.75 mg/kg)-induced responding (p = 0.040), with no significant change in response rate (p = 0.247). However, THCV combined with THC (1.5 mg/kg) affected response rates (p = 0.012), with 6 mg/kg significantly reducing rates vs. 3 mg/kg (p = 0.013). Blood THC and 11-OH-THC levels remained unchanged when THC was combined with THCV. The findings suggest THCV can partially mimic or block THC's discriminative effects in a dose-dependent manner, possibly acting as a partial CB1 agonist.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.