从治疗性热泥浆中最丰富的蓝藻菌株提取的脂质体内抗炎活性

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-09-10 DOI:10.3390/biom15091301
Micol Caichiolo, Giuliana d'Ippolito, Angela Grazioso, Chiara Rampazzo, Angelica Marchetto, Fabrizio Caldara, Luisa Dalla Valle, Nicoletta La Rocca
{"title":"从治疗性热泥浆中最丰富的蓝藻菌株提取的脂质体内抗炎活性","authors":"Micol Caichiolo, Giuliana d'Ippolito, Angela Grazioso, Chiara Rampazzo, Angelica Marchetto, Fabrizio Caldara, Luisa Dalla Valle, Nicoletta La Rocca","doi":"10.3390/biom15091301","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanobacteria are a natural source of bioactive compounds increasingly recognized for their anti-inflammatory properties. In the Euganean Thermal District (Italy), thermal muds, used to cure arthro-rheumatic diseases, are prepared using natural clay and thermal water, resulting in a mature mud characterized by a complex microbial biofilm dominated by Cyanobacteria. Among these, <i>Phormidium</i> sp. ETS-05 has been shown to contribute to the therapeutic properties of the mud, mainly through the production of bioactive compounds such as exopolysaccharides (EPSs) and glycoglycerolipids (GLs). In contrast, the role of biomolecules from <i>Thermospirulina andreolii</i> ETS-09 and <i>Kovacikia euganea</i> ETS-13, also abundant in mature muds but at higher maturation temperatures, has not been investigated. This study focuses on the lipid profiles of these cyanobacteria, cultivated under temperature conditions that mimic their natural environment and that are different for the three species. Lipid extracts were analyzed for GLs classes and fatty acid composition, and their anti-inflammatory potential was assessed in vivo using a zebrafish inflammation model. All extracts showed anti-inflammatory activity with <i>Phormidium</i> sp. ETS-05 displaying the highest lipid content and the most rapid and potent beneficial effect, likely due to the specific composition of its GLs, presenting the greatest abundance of polyunsaturated fatty acids. These findings provide new insights into the biological basis of the therapeutic effects of Euganean muds and emphasize the importance of maturation conditions for cyanobacterial growth and bioactive lipid production.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467192/pdf/","citationCount":"0","resultStr":"{\"title\":\"In Vivo Anti-Inflammatory Activity of Lipids Extracted from the Most Abundant Cyanobacterial Strains of the Therapeutic Euganean Thermal Muds.\",\"authors\":\"Micol Caichiolo, Giuliana d'Ippolito, Angela Grazioso, Chiara Rampazzo, Angelica Marchetto, Fabrizio Caldara, Luisa Dalla Valle, Nicoletta La Rocca\",\"doi\":\"10.3390/biom15091301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyanobacteria are a natural source of bioactive compounds increasingly recognized for their anti-inflammatory properties. In the Euganean Thermal District (Italy), thermal muds, used to cure arthro-rheumatic diseases, are prepared using natural clay and thermal water, resulting in a mature mud characterized by a complex microbial biofilm dominated by Cyanobacteria. Among these, <i>Phormidium</i> sp. ETS-05 has been shown to contribute to the therapeutic properties of the mud, mainly through the production of bioactive compounds such as exopolysaccharides (EPSs) and glycoglycerolipids (GLs). In contrast, the role of biomolecules from <i>Thermospirulina andreolii</i> ETS-09 and <i>Kovacikia euganea</i> ETS-13, also abundant in mature muds but at higher maturation temperatures, has not been investigated. This study focuses on the lipid profiles of these cyanobacteria, cultivated under temperature conditions that mimic their natural environment and that are different for the three species. Lipid extracts were analyzed for GLs classes and fatty acid composition, and their anti-inflammatory potential was assessed in vivo using a zebrafish inflammation model. All extracts showed anti-inflammatory activity with <i>Phormidium</i> sp. ETS-05 displaying the highest lipid content and the most rapid and potent beneficial effect, likely due to the specific composition of its GLs, presenting the greatest abundance of polyunsaturated fatty acids. These findings provide new insights into the biological basis of the therapeutic effects of Euganean muds and emphasize the importance of maturation conditions for cyanobacterial growth and bioactive lipid production.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15091301\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091301","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蓝藻是生物活性化合物的天然来源,因其抗炎特性而日益得到认可。在Euganean热区(意大利),热泥是用天然粘土和热水制备的,用于治疗关节风湿病,从而形成一种成熟的泥,其特征是由蓝藻菌主导的复杂微生物生物膜。其中,Phormidium sp. ETS-05已被证明对泥浆的治疗特性有贡献,主要是通过产生生物活性化合物,如胞外多糖(eps)和甘油脂(GLs)。相比之下,热螺旋藻ETS-09和热螺旋藻ETS-13中的生物分子在成熟泥中也很丰富,但在更高的成熟温度下,它们的作用尚未得到研究。本研究的重点是这些蓝藻的脂质谱,在模拟其自然环境的温度条件下培养,这是不同的三个物种。分析脂质提取物的GLs类别和脂肪酸组成,并利用斑马鱼炎症模型评估其体内抗炎潜力。所有提取物均显示出抗炎活性,其中Phormidium sp. ETS-05显示出最高的脂质含量和最迅速和最有效的有益作用,可能是由于其GLs的特殊组成,具有最丰富的多不饱和脂肪酸。这些发现为真核菌泥治疗效果的生物学基础提供了新的见解,并强调了成熟条件对蓝藻生长和生物活性脂质产生的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Vivo Anti-Inflammatory Activity of Lipids Extracted from the Most Abundant Cyanobacterial Strains of the Therapeutic Euganean Thermal Muds.

Cyanobacteria are a natural source of bioactive compounds increasingly recognized for their anti-inflammatory properties. In the Euganean Thermal District (Italy), thermal muds, used to cure arthro-rheumatic diseases, are prepared using natural clay and thermal water, resulting in a mature mud characterized by a complex microbial biofilm dominated by Cyanobacteria. Among these, Phormidium sp. ETS-05 has been shown to contribute to the therapeutic properties of the mud, mainly through the production of bioactive compounds such as exopolysaccharides (EPSs) and glycoglycerolipids (GLs). In contrast, the role of biomolecules from Thermospirulina andreolii ETS-09 and Kovacikia euganea ETS-13, also abundant in mature muds but at higher maturation temperatures, has not been investigated. This study focuses on the lipid profiles of these cyanobacteria, cultivated under temperature conditions that mimic their natural environment and that are different for the three species. Lipid extracts were analyzed for GLs classes and fatty acid composition, and their anti-inflammatory potential was assessed in vivo using a zebrafish inflammation model. All extracts showed anti-inflammatory activity with Phormidium sp. ETS-05 displaying the highest lipid content and the most rapid and potent beneficial effect, likely due to the specific composition of its GLs, presenting the greatest abundance of polyunsaturated fatty acids. These findings provide new insights into the biological basis of the therapeutic effects of Euganean muds and emphasize the importance of maturation conditions for cyanobacterial growth and bioactive lipid production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信