{"title":"PARP1和PARG是聚梳-三胸染色质调节机制的牵引马。","authors":"Guillaume Bordet, Alexei V Tulin","doi":"10.3390/biom15091314","DOIUrl":null,"url":null,"abstract":"<p><p>During tissue differentiation, gene expression patterns are committed to the epigenetic cellular memory machinery, including Polycomb and Trithorax groups (PcG and TrxG), which label chromatin with repressive or active histone marks. Histone marks recruit effector proteins that then execute local chromatin repression or activation. The effectors of TrxG have remained largely unknown. Here we report that the Poly (ADP-ribose) Polymerase 1 (PARP1) and Poly (ADP-ribose) Glycohydrolase (PARG) function as critical effectors of TrxG and PcG, respectively. We found that PARP1 binds TrxG-generated histone marks with high affinity in vitro, completely colocalizing with them genome-wide, and controls the expression of loci modified by TrxG. Conversely, PARG preferentially associates with PcG-occupied loci. We propose a model in which TrxG complexes prime chromatin for PARP1 recruitment, leading to poly (ADP-ribose) generation to maintain an open chromatin state essential for transcription.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467497/pdf/","citationCount":"0","resultStr":"{\"title\":\"PARP1 and PARG Are the Draft Horses for Polycomb-Trithorax Chromatin Regulator Machinery.\",\"authors\":\"Guillaume Bordet, Alexei V Tulin\",\"doi\":\"10.3390/biom15091314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During tissue differentiation, gene expression patterns are committed to the epigenetic cellular memory machinery, including Polycomb and Trithorax groups (PcG and TrxG), which label chromatin with repressive or active histone marks. Histone marks recruit effector proteins that then execute local chromatin repression or activation. The effectors of TrxG have remained largely unknown. Here we report that the Poly (ADP-ribose) Polymerase 1 (PARP1) and Poly (ADP-ribose) Glycohydrolase (PARG) function as critical effectors of TrxG and PcG, respectively. We found that PARP1 binds TrxG-generated histone marks with high affinity in vitro, completely colocalizing with them genome-wide, and controls the expression of loci modified by TrxG. Conversely, PARG preferentially associates with PcG-occupied loci. We propose a model in which TrxG complexes prime chromatin for PARP1 recruitment, leading to poly (ADP-ribose) generation to maintain an open chromatin state essential for transcription.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467497/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15091314\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091314","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PARP1 and PARG Are the Draft Horses for Polycomb-Trithorax Chromatin Regulator Machinery.
During tissue differentiation, gene expression patterns are committed to the epigenetic cellular memory machinery, including Polycomb and Trithorax groups (PcG and TrxG), which label chromatin with repressive or active histone marks. Histone marks recruit effector proteins that then execute local chromatin repression or activation. The effectors of TrxG have remained largely unknown. Here we report that the Poly (ADP-ribose) Polymerase 1 (PARP1) and Poly (ADP-ribose) Glycohydrolase (PARG) function as critical effectors of TrxG and PcG, respectively. We found that PARP1 binds TrxG-generated histone marks with high affinity in vitro, completely colocalizing with them genome-wide, and controls the expression of loci modified by TrxG. Conversely, PARG preferentially associates with PcG-occupied loci. We propose a model in which TrxG complexes prime chromatin for PARP1 recruitment, leading to poly (ADP-ribose) generation to maintain an open chromatin state essential for transcription.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.