Amber Grewal, Simran Raikundalia, Joseph Zaia, Manveen K Sethi
{"title":"阿尔茨海默病淀粉样斑块和神经原纤维缠结的蛋白质组学分析综述。","authors":"Amber Grewal, Simran Raikundalia, Joseph Zaia, Manveen K Sethi","doi":"10.3390/biom15091310","DOIUrl":null,"url":null,"abstract":"<p><p>In this review, we describe the methods used for the extraction and mass spectrometry proteomics analysis of amyloid plaques and neurofibrillary tangles (NFTs), the two primary pathological hallmarks of Alzheimer's disease (AD). We also provide a comprehensive overview of the mass spectrometry-based studies conducted to analyze these pathological features. AD is the most prevalent form of dementia and the sixth leading cause of death in the United States. While the current treatments can alleviate early-stage memory and cognitive symptoms, they do not offer a cure. Thus, there is a pressing need to deepen our understanding of the neuropathological mechanisms underlying AD and to develop more effective therapeutics. In-depth mass spectrometry-based proteomics analyses of AD pathology-specifically, extracellular the Aβ plaques found in extracellular spaces and blood vessel walls and intraneuronal NFTs composed of the microtubule-associated protein tau-may offer molecular-level observations that contribute to the understanding of the biological context of plaque and NFT formation and support the discovery of potential biomarkers and therapeutic targets for AD.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467479/pdf/","citationCount":"0","resultStr":"{\"title\":\"Overview of Proteomic Analysis of Amyloid Plaques and Neurofibrillary Tangles in Alzheimer's Disease.\",\"authors\":\"Amber Grewal, Simran Raikundalia, Joseph Zaia, Manveen K Sethi\",\"doi\":\"10.3390/biom15091310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this review, we describe the methods used for the extraction and mass spectrometry proteomics analysis of amyloid plaques and neurofibrillary tangles (NFTs), the two primary pathological hallmarks of Alzheimer's disease (AD). We also provide a comprehensive overview of the mass spectrometry-based studies conducted to analyze these pathological features. AD is the most prevalent form of dementia and the sixth leading cause of death in the United States. While the current treatments can alleviate early-stage memory and cognitive symptoms, they do not offer a cure. Thus, there is a pressing need to deepen our understanding of the neuropathological mechanisms underlying AD and to develop more effective therapeutics. In-depth mass spectrometry-based proteomics analyses of AD pathology-specifically, extracellular the Aβ plaques found in extracellular spaces and blood vessel walls and intraneuronal NFTs composed of the microtubule-associated protein tau-may offer molecular-level observations that contribute to the understanding of the biological context of plaque and NFT formation and support the discovery of potential biomarkers and therapeutic targets for AD.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467479/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15091310\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091310","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Overview of Proteomic Analysis of Amyloid Plaques and Neurofibrillary Tangles in Alzheimer's Disease.
In this review, we describe the methods used for the extraction and mass spectrometry proteomics analysis of amyloid plaques and neurofibrillary tangles (NFTs), the two primary pathological hallmarks of Alzheimer's disease (AD). We also provide a comprehensive overview of the mass spectrometry-based studies conducted to analyze these pathological features. AD is the most prevalent form of dementia and the sixth leading cause of death in the United States. While the current treatments can alleviate early-stage memory and cognitive symptoms, they do not offer a cure. Thus, there is a pressing need to deepen our understanding of the neuropathological mechanisms underlying AD and to develop more effective therapeutics. In-depth mass spectrometry-based proteomics analyses of AD pathology-specifically, extracellular the Aβ plaques found in extracellular spaces and blood vessel walls and intraneuronal NFTs composed of the microtubule-associated protein tau-may offer molecular-level observations that contribute to the understanding of the biological context of plaque and NFT formation and support the discovery of potential biomarkers and therapeutic targets for AD.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.