{"title":"d -氨基酸对精神分裂症的影响。","authors":"Serdar M Dursun, Leman H Dursun, Glen B Baker","doi":"10.3390/biom15091270","DOIUrl":null,"url":null,"abstract":"<p><p>Most amino acids contain a chiral center and thus, can exist as L- and D-isomers. For many years, it was thought that only the L-isomers were present in mammals. However, in recent decades it has been demonstrated that D-isomers are also present. Three of these amino acids, namely D-serine, D-aspartate, and D-alanine, have been proposed to play a role in the etiology of schizophrenia via interactions with glutamate receptors. D-Serine and D-alanine act at the glycine modulatory site on the NMDA receptor, while D-aspartate acts at the glutamate site on the same receptor. D-aspartate also acts on the mGlu5 receptor and can stimulate glutamate release presynaptically. Preclinical studies have reported that manipulations to reduce brain levels of D-serine, D-aspartate, or D-alanine lead to schizophrenia-relevant behaviors, and clinical studies have reported reduced levels of these D-amino acids in the brain tissue (postmortem) and/or body fluids from schizophrenia patients compared to those noted in controls, although there are some contradictory findings. The possible use of these amino acids and/or the manipulation of their relevant enzymes in the treatment of schizophrenia are described. D-Cysteine has been identified recently in human brain tissue, with the highest values in white matter; demonstration of its involvement in brain development has led to speculation that it could be involved in the etiology of schizophrenia, identifying it as a potential therapy in combination with antipsychotics. Future directions and potential problems that should be considered in studies on D-amino acids and their relevant enzymes in schizophrenia are discussed.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467088/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of D-Amino Acids in Schizophrenia.\",\"authors\":\"Serdar M Dursun, Leman H Dursun, Glen B Baker\",\"doi\":\"10.3390/biom15091270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most amino acids contain a chiral center and thus, can exist as L- and D-isomers. For many years, it was thought that only the L-isomers were present in mammals. However, in recent decades it has been demonstrated that D-isomers are also present. Three of these amino acids, namely D-serine, D-aspartate, and D-alanine, have been proposed to play a role in the etiology of schizophrenia via interactions with glutamate receptors. D-Serine and D-alanine act at the glycine modulatory site on the NMDA receptor, while D-aspartate acts at the glutamate site on the same receptor. D-aspartate also acts on the mGlu5 receptor and can stimulate glutamate release presynaptically. Preclinical studies have reported that manipulations to reduce brain levels of D-serine, D-aspartate, or D-alanine lead to schizophrenia-relevant behaviors, and clinical studies have reported reduced levels of these D-amino acids in the brain tissue (postmortem) and/or body fluids from schizophrenia patients compared to those noted in controls, although there are some contradictory findings. The possible use of these amino acids and/or the manipulation of their relevant enzymes in the treatment of schizophrenia are described. D-Cysteine has been identified recently in human brain tissue, with the highest values in white matter; demonstration of its involvement in brain development has led to speculation that it could be involved in the etiology of schizophrenia, identifying it as a potential therapy in combination with antipsychotics. Future directions and potential problems that should be considered in studies on D-amino acids and their relevant enzymes in schizophrenia are discussed.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467088/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15091270\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091270","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Most amino acids contain a chiral center and thus, can exist as L- and D-isomers. For many years, it was thought that only the L-isomers were present in mammals. However, in recent decades it has been demonstrated that D-isomers are also present. Three of these amino acids, namely D-serine, D-aspartate, and D-alanine, have been proposed to play a role in the etiology of schizophrenia via interactions with glutamate receptors. D-Serine and D-alanine act at the glycine modulatory site on the NMDA receptor, while D-aspartate acts at the glutamate site on the same receptor. D-aspartate also acts on the mGlu5 receptor and can stimulate glutamate release presynaptically. Preclinical studies have reported that manipulations to reduce brain levels of D-serine, D-aspartate, or D-alanine lead to schizophrenia-relevant behaviors, and clinical studies have reported reduced levels of these D-amino acids in the brain tissue (postmortem) and/or body fluids from schizophrenia patients compared to those noted in controls, although there are some contradictory findings. The possible use of these amino acids and/or the manipulation of their relevant enzymes in the treatment of schizophrenia are described. D-Cysteine has been identified recently in human brain tissue, with the highest values in white matter; demonstration of its involvement in brain development has led to speculation that it could be involved in the etiology of schizophrenia, identifying it as a potential therapy in combination with antipsychotics. Future directions and potential problems that should be considered in studies on D-amino acids and their relevant enzymes in schizophrenia are discussed.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.