Sergey Chistiakov, Anton Dolganov, Paul A Constable, Aleksei Zhdanov, Mikhail Kulyabin, Dorothy A Thompson, Irene O Lee, Faisal Albasu, Vasilii Borisov, Mikhail Ronkin
{"title":"利用光适应视网膜电图进行自闭症谱系障碍的时间序列分类。","authors":"Sergey Chistiakov, Anton Dolganov, Paul A Constable, Aleksei Zhdanov, Mikhail Kulyabin, Dorothy A Thompson, Irene O Lee, Faisal Albasu, Vasilii Borisov, Mikhail Ronkin","doi":"10.3390/bioengineering12090951","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical electroretinogram (ERG) is a non-invasive diagnostic test used to assess the functional state of the retina by recording changes in the bioelectric potential following brief flashes of light. The recorded ERG waveform offers ways for diagnosing both retinal dystrophies and neurological disorders such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and Parkinson's disease. In this study, different time-series-based machine learning methods were used to classify ERG signals from ASD and typically developing individuals with the aim of interpreting the decisions made by the models to understand the classification process made by the models. Among the time-series classification (TSC) algorithms, the Random Convolutional Kernel Transform (ROCKET) algorithm showed the most accurate results with the fewest number of predictive errors. For the interpretation analysis of the model predictions, the SHapley Additive exPlanations (SHAP) algorithm was applied to each of the models' predictions, with the ROCKET and KNeighborsTimeSeriesClassifier (TS-KNN) algorithms showing more suitability for ASD classification as they provided better-defined explanations by discarding the uninformative non-physiological part of the ERG waveform baseline signal and focused on the time regions incorporating the clinically significant a- and b-waves of the ERG. With the potential broadening scope of practice for visual electrophysiology within neurological disorders, TSC may support the identification of important regions in the ERG time series to support the classification of neurological disorders and potential retinal diseases.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467820/pdf/","citationCount":"0","resultStr":"{\"title\":\"Time Series Classification of Autism Spectrum Disorder Using the Light-Adapted Electroretinogram.\",\"authors\":\"Sergey Chistiakov, Anton Dolganov, Paul A Constable, Aleksei Zhdanov, Mikhail Kulyabin, Dorothy A Thompson, Irene O Lee, Faisal Albasu, Vasilii Borisov, Mikhail Ronkin\",\"doi\":\"10.3390/bioengineering12090951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The clinical electroretinogram (ERG) is a non-invasive diagnostic test used to assess the functional state of the retina by recording changes in the bioelectric potential following brief flashes of light. The recorded ERG waveform offers ways for diagnosing both retinal dystrophies and neurological disorders such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and Parkinson's disease. In this study, different time-series-based machine learning methods were used to classify ERG signals from ASD and typically developing individuals with the aim of interpreting the decisions made by the models to understand the classification process made by the models. Among the time-series classification (TSC) algorithms, the Random Convolutional Kernel Transform (ROCKET) algorithm showed the most accurate results with the fewest number of predictive errors. For the interpretation analysis of the model predictions, the SHapley Additive exPlanations (SHAP) algorithm was applied to each of the models' predictions, with the ROCKET and KNeighborsTimeSeriesClassifier (TS-KNN) algorithms showing more suitability for ASD classification as they provided better-defined explanations by discarding the uninformative non-physiological part of the ERG waveform baseline signal and focused on the time regions incorporating the clinically significant a- and b-waves of the ERG. With the potential broadening scope of practice for visual electrophysiology within neurological disorders, TSC may support the identification of important regions in the ERG time series to support the classification of neurological disorders and potential retinal diseases.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467820/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12090951\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090951","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Time Series Classification of Autism Spectrum Disorder Using the Light-Adapted Electroretinogram.
The clinical electroretinogram (ERG) is a non-invasive diagnostic test used to assess the functional state of the retina by recording changes in the bioelectric potential following brief flashes of light. The recorded ERG waveform offers ways for diagnosing both retinal dystrophies and neurological disorders such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and Parkinson's disease. In this study, different time-series-based machine learning methods were used to classify ERG signals from ASD and typically developing individuals with the aim of interpreting the decisions made by the models to understand the classification process made by the models. Among the time-series classification (TSC) algorithms, the Random Convolutional Kernel Transform (ROCKET) algorithm showed the most accurate results with the fewest number of predictive errors. For the interpretation analysis of the model predictions, the SHapley Additive exPlanations (SHAP) algorithm was applied to each of the models' predictions, with the ROCKET and KNeighborsTimeSeriesClassifier (TS-KNN) algorithms showing more suitability for ASD classification as they provided better-defined explanations by discarding the uninformative non-physiological part of the ERG waveform baseline signal and focused on the time regions incorporating the clinically significant a- and b-waves of the ERG. With the potential broadening scope of practice for visual electrophysiology within neurological disorders, TSC may support the identification of important regions in the ERG time series to support the classification of neurological disorders and potential retinal diseases.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering