罗马尼亚、意大利和瑞士COVID-19动态的比较研究:数学建模、预测和资源配置策略

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Cristina-Maria Stăncioi, Iulia Adina Ștefan, Violeta Briciu, Vlad Mureșan, Iulia Clitan, Mihail Abrudean, Mihaela-Ligia Ungureșan, Radu Miron, Ecaterina Stativă, Roxana Carmen Cordoș, Adriana Topan, Ioana Nanu
{"title":"罗马尼亚、意大利和瑞士COVID-19动态的比较研究:数学建模、预测和资源配置策略","authors":"Cristina-Maria Stăncioi, Iulia Adina Ștefan, Violeta Briciu, Vlad Mureșan, Iulia Clitan, Mihail Abrudean, Mihaela-Ligia Ungureșan, Radu Miron, Ecaterina Stativă, Roxana Carmen Cordoș, Adriana Topan, Ioana Nanu","doi":"10.3390/bioengineering12090991","DOIUrl":null,"url":null,"abstract":"<p><p>This research provides valuable insights into the application of mathematical modeling to real-world scenarios, as exemplified by the COVID-19 pandemic. After data collection, the preparation stage included exploratory analysis, standardization and normalization, computation, and validation. A mathematical model initially developed for COVID-19 dynamics in Romania was subsequently applied to data from Italy and Switzerland during the same time interval. The model is structured as a multiple-input single-output (MISO) system, where the inputs underwent a neural network-based training stage to address inconsistencies in the acquired data. In parallel, an ARMAX model was employed to capture the stochastic nature of the epidemic process. Results demonstrate that the Romanian-based model generalized effectively across the three countries, achieving a strong predictive accuracy (forecast accuracy > 98.59%). Importantly, the model maintained robust performance despite significant cross-country differences in testing strategies, policy measures, timing of initial cases, and imported infections. This work contributes a novel perspective by showing that a unified data-driven modeling framework can be transferable across heterogeneous contexts. More broadly, it underscores the potential of integrating mathematical modeling with predictive analytics to support evidence-based decision-making and strengthen preparedness for future global health crises.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467258/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study on COVID-19 Dynamics: Mathematical Modeling, Predictions, and Resource Allocation Strategies in Romania, Italy, and Switzerland.\",\"authors\":\"Cristina-Maria Stăncioi, Iulia Adina Ștefan, Violeta Briciu, Vlad Mureșan, Iulia Clitan, Mihail Abrudean, Mihaela-Ligia Ungureșan, Radu Miron, Ecaterina Stativă, Roxana Carmen Cordoș, Adriana Topan, Ioana Nanu\",\"doi\":\"10.3390/bioengineering12090991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research provides valuable insights into the application of mathematical modeling to real-world scenarios, as exemplified by the COVID-19 pandemic. After data collection, the preparation stage included exploratory analysis, standardization and normalization, computation, and validation. A mathematical model initially developed for COVID-19 dynamics in Romania was subsequently applied to data from Italy and Switzerland during the same time interval. The model is structured as a multiple-input single-output (MISO) system, where the inputs underwent a neural network-based training stage to address inconsistencies in the acquired data. In parallel, an ARMAX model was employed to capture the stochastic nature of the epidemic process. Results demonstrate that the Romanian-based model generalized effectively across the three countries, achieving a strong predictive accuracy (forecast accuracy > 98.59%). Importantly, the model maintained robust performance despite significant cross-country differences in testing strategies, policy measures, timing of initial cases, and imported infections. This work contributes a novel perspective by showing that a unified data-driven modeling framework can be transferable across heterogeneous contexts. More broadly, it underscores the potential of integrating mathematical modeling with predictive analytics to support evidence-based decision-making and strengthen preparedness for future global health crises.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467258/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12090991\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090991","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项研究为将数学建模应用于现实世界提供了有价值的见解,例如COVID-19大流行。数据收集后的准备阶段包括探索性分析、标准化和规范化、计算和验证。最初为罗马尼亚COVID-19动态开发的数学模型随后应用于同一时间段内意大利和瑞士的数据。该模型结构为多输入单输出(MISO)系统,其中输入经过基于神经网络的训练阶段,以解决所获取数据的不一致性。同时,采用了一个ARMAX模型来捕捉流行病过程的随机性。结果表明,基于罗马尼亚的模型可以有效地推广到三个国家,实现了较强的预测精度(预测精度> 98.59%)。重要的是,尽管各国在检测策略、政策措施、初始病例时间和输入性感染方面存在重大差异,但该模型仍保持了强劲的表现。这项工作通过展示统一的数据驱动建模框架可以跨异构上下文转移,提供了一个新的视角。更广泛地说,它强调了将数学建模与预测分析相结合的潜力,以支持基于证据的决策并加强对未来全球卫生危机的准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study on COVID-19 Dynamics: Mathematical Modeling, Predictions, and Resource Allocation Strategies in Romania, Italy, and Switzerland.

This research provides valuable insights into the application of mathematical modeling to real-world scenarios, as exemplified by the COVID-19 pandemic. After data collection, the preparation stage included exploratory analysis, standardization and normalization, computation, and validation. A mathematical model initially developed for COVID-19 dynamics in Romania was subsequently applied to data from Italy and Switzerland during the same time interval. The model is structured as a multiple-input single-output (MISO) system, where the inputs underwent a neural network-based training stage to address inconsistencies in the acquired data. In parallel, an ARMAX model was employed to capture the stochastic nature of the epidemic process. Results demonstrate that the Romanian-based model generalized effectively across the three countries, achieving a strong predictive accuracy (forecast accuracy > 98.59%). Importantly, the model maintained robust performance despite significant cross-country differences in testing strategies, policy measures, timing of initial cases, and imported infections. This work contributes a novel perspective by showing that a unified data-driven modeling framework can be transferable across heterogeneous contexts. More broadly, it underscores the potential of integrating mathematical modeling with predictive analytics to support evidence-based decision-making and strengthen preparedness for future global health crises.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信