Subrata H Mishra, Sujan Chatterjee, Loretta Viera-Preval, Prasun Guha
{"title":"从默默无闻到显赫:IPMK在细胞信号、生理和疾病中的扩展作用。","authors":"Subrata H Mishra, Sujan Chatterjee, Loretta Viera-Preval, Prasun Guha","doi":"10.3390/biom15091266","DOIUrl":null,"url":null,"abstract":"<p><p>Once a protein of relative obscurity, inositol polyphosphate multikinase (IPMK) emerged as a versatile and indispensable enzyme in cellular biology. With dual inositol and lipid kinase activities, IPMK generates pivotal signaling molecules such as InsP4 (inositol tetraphosphate), InsP5 (inositol pentaphosphate), and PIP3 (phosphoinositide 3,4,5-trisphosphate), positioning it as a critical regulator of cellular mechanisms. Initially identified in yeast and later recognized as essential for mammalian embryonic development, IPMK has transitioned from a niche interest to a focal point in studies of nutrient sensing, growth factor signaling, mRNA transport, and transcription regulation. Over two decades, multidisciplinary research has unveiled its far-reaching biological roles and implications in diverse diseases, including neurodegeneration, cancer, and inflammation. This review charts IPMK's journey from obscurity to prominence, examining its structure-function relationships, cellular roles, and emerging physiological impacts, while highlighting its potential as a therapeutic target in human health and disease.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467090/pdf/","citationCount":"0","resultStr":"{\"title\":\"From Obscurity to Prominence: IPMK's Expanding Role in Cellular Signaling, Physiology, and Disease.\",\"authors\":\"Subrata H Mishra, Sujan Chatterjee, Loretta Viera-Preval, Prasun Guha\",\"doi\":\"10.3390/biom15091266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Once a protein of relative obscurity, inositol polyphosphate multikinase (IPMK) emerged as a versatile and indispensable enzyme in cellular biology. With dual inositol and lipid kinase activities, IPMK generates pivotal signaling molecules such as InsP4 (inositol tetraphosphate), InsP5 (inositol pentaphosphate), and PIP3 (phosphoinositide 3,4,5-trisphosphate), positioning it as a critical regulator of cellular mechanisms. Initially identified in yeast and later recognized as essential for mammalian embryonic development, IPMK has transitioned from a niche interest to a focal point in studies of nutrient sensing, growth factor signaling, mRNA transport, and transcription regulation. Over two decades, multidisciplinary research has unveiled its far-reaching biological roles and implications in diverse diseases, including neurodegeneration, cancer, and inflammation. This review charts IPMK's journey from obscurity to prominence, examining its structure-function relationships, cellular roles, and emerging physiological impacts, while highlighting its potential as a therapeutic target in human health and disease.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467090/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15091266\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091266","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
From Obscurity to Prominence: IPMK's Expanding Role in Cellular Signaling, Physiology, and Disease.
Once a protein of relative obscurity, inositol polyphosphate multikinase (IPMK) emerged as a versatile and indispensable enzyme in cellular biology. With dual inositol and lipid kinase activities, IPMK generates pivotal signaling molecules such as InsP4 (inositol tetraphosphate), InsP5 (inositol pentaphosphate), and PIP3 (phosphoinositide 3,4,5-trisphosphate), positioning it as a critical regulator of cellular mechanisms. Initially identified in yeast and later recognized as essential for mammalian embryonic development, IPMK has transitioned from a niche interest to a focal point in studies of nutrient sensing, growth factor signaling, mRNA transport, and transcription regulation. Over two decades, multidisciplinary research has unveiled its far-reaching biological roles and implications in diverse diseases, including neurodegeneration, cancer, and inflammation. This review charts IPMK's journey from obscurity to prominence, examining its structure-function relationships, cellular roles, and emerging physiological impacts, while highlighting its potential as a therapeutic target in human health and disease.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.