多发性硬化症的新动物模型:髓磷脂病理生理中的R-Ras gtpase。

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-09-11 DOI:10.3390/biom15091309
Gema M Esteban-Ortega, Gonzalo Garcia-Martin, Beatriz Cubelos
{"title":"多发性硬化症的新动物模型:髓磷脂病理生理中的R-Ras gtpase。","authors":"Gema M Esteban-Ortega, Gonzalo Garcia-Martin, Beatriz Cubelos","doi":"10.3390/biom15091309","DOIUrl":null,"url":null,"abstract":"<p><p>Demyelinating diseases, such as multiple sclerosis, involve oligodendrocyte death, myelin loss, and neuronal death. These processes have been extensively studied, and a causal relationship has been demonstrated between them: destruction of oligodendrocytes results in myelin deficiency, which subsequently leads to neurodegeneration and the consequent loss of sensory, motor, and cognitive functions. Currently, myelinopathies lack fully effective treatments. Available drugs primarily focus on controlling the immune response without directly promoting myelin regeneration or restoring neuronal functionality. Alongside these treatments, pharmaceutical research has increasingly focused on developing therapies that stimulate oligodendroglial lineage differentiation and myelin sheath regeneration. Despite these advances, the lack of suitable preclinical models has been a significant obstacle in evaluating new therapeutic compounds. In this review, we present the main animal models used in the preclinical phase for the study of myelin-related diseases and their role in the development of new therapies. In addition, we highlight the usefulness of R-Ras animal models for assessing the efficacy of compounds that promote oligodendrocyte differentiation.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467086/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel Animal Models for Multiple Sclerosis: R-Ras GTPases in Myelin Pathophysiology.\",\"authors\":\"Gema M Esteban-Ortega, Gonzalo Garcia-Martin, Beatriz Cubelos\",\"doi\":\"10.3390/biom15091309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Demyelinating diseases, such as multiple sclerosis, involve oligodendrocyte death, myelin loss, and neuronal death. These processes have been extensively studied, and a causal relationship has been demonstrated between them: destruction of oligodendrocytes results in myelin deficiency, which subsequently leads to neurodegeneration and the consequent loss of sensory, motor, and cognitive functions. Currently, myelinopathies lack fully effective treatments. Available drugs primarily focus on controlling the immune response without directly promoting myelin regeneration or restoring neuronal functionality. Alongside these treatments, pharmaceutical research has increasingly focused on developing therapies that stimulate oligodendroglial lineage differentiation and myelin sheath regeneration. Despite these advances, the lack of suitable preclinical models has been a significant obstacle in evaluating new therapeutic compounds. In this review, we present the main animal models used in the preclinical phase for the study of myelin-related diseases and their role in the development of new therapies. In addition, we highlight the usefulness of R-Ras animal models for assessing the efficacy of compounds that promote oligodendrocyte differentiation.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467086/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15091309\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091309","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脱髓鞘疾病,如多发性硬化症,涉及少突胶质细胞死亡、髓磷脂丢失和神经元死亡。这些过程已被广泛研究,它们之间的因果关系已被证明:少突胶质细胞的破坏导致髓磷脂缺乏,随后导致神经变性以及随之而来的感觉、运动和认知功能的丧失。目前,髓鞘病缺乏完全有效的治疗方法。现有的药物主要集中在控制免疫反应,而不是直接促进髓磷脂再生或恢复神经元功能。除了这些治疗之外,药物研究越来越关注于开发刺激少突胶质细胞谱系分化和髓鞘再生的治疗方法。尽管取得了这些进展,但缺乏合适的临床前模型一直是评估新的治疗性化合物的一个重大障碍。在这篇综述中,我们介绍了用于髓磷脂相关疾病临床前阶段研究的主要动物模型及其在新疗法开发中的作用。此外,我们强调了R-Ras动物模型对评估促进少突胶质细胞分化的化合物的功效的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Animal Models for Multiple Sclerosis: R-Ras GTPases in Myelin Pathophysiology.

Demyelinating diseases, such as multiple sclerosis, involve oligodendrocyte death, myelin loss, and neuronal death. These processes have been extensively studied, and a causal relationship has been demonstrated between them: destruction of oligodendrocytes results in myelin deficiency, which subsequently leads to neurodegeneration and the consequent loss of sensory, motor, and cognitive functions. Currently, myelinopathies lack fully effective treatments. Available drugs primarily focus on controlling the immune response without directly promoting myelin regeneration or restoring neuronal functionality. Alongside these treatments, pharmaceutical research has increasingly focused on developing therapies that stimulate oligodendroglial lineage differentiation and myelin sheath regeneration. Despite these advances, the lack of suitable preclinical models has been a significant obstacle in evaluating new therapeutic compounds. In this review, we present the main animal models used in the preclinical phase for the study of myelin-related diseases and their role in the development of new therapies. In addition, we highlight the usefulness of R-Ras animal models for assessing the efficacy of compounds that promote oligodendrocyte differentiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信