Rong-Heng Zhao, Shuai Ren, Yan Shi, Mao-Lin Cai, Tao Wang, Zu-Jin Luo
{"title":"用于动态呼吸模拟的精确控制仿生肺模拟器。","authors":"Rong-Heng Zhao, Shuai Ren, Yan Shi, Mao-Lin Cai, Tao Wang, Zu-Jin Luo","doi":"10.3390/bioengineering12090963","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical ventilation is indispensable for patients with severe respiratory conditions, and high-fidelity lung simulators play a pivotal role in ventilator testing, clinical training, and respiratory research. However, most existing simulators are passive, single-lung models with limited and discrete control over respiratory mechanics, which constrains their ability to reproduce realistic breathing dynamics. To overcome these limitations, this study presents a dual-chamber lung simulator that can operate in both active and passive modes. The system integrates a sliding mode controller enhanced by a linear extended state observer, enabling the accurate replication of complex respiratory patterns. In active mode, the simulator allows for the precise tuning of respiratory muscle force profiles, lung compliance, and airway resistance to generate physiologically accurate flow and pressure waveforms. Notably, it can effectively simulate pathological conditions such as acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD) by adjusting key parameters to mimic the characteristic respiratory mechanics of these disorders. Experimental results show that the absolute flow error remains within ±3 L/min, and the response time is under 200 ms, ensuring rapid and reliable performance. In passive mode, the simulator emulates ventilator-dependent conditions, providing continuous adjustability of lung compliance from 30 to 100 mL/cmH2O and airway resistance from 2.01 to 14.67cmH2O/(L/s), with compliance deviations limited to ±5%. This design facilitates fine, continuous modulation of key respiratory parameters, making the system well-suited for evaluating ventilator performance, conducting human-machine interaction studies, and simulating pathological respiratory states.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467682/pdf/","citationCount":"0","resultStr":"{\"title\":\"Precision-Controlled Bionic Lung Simulator for Dynamic Respiration Simulation.\",\"authors\":\"Rong-Heng Zhao, Shuai Ren, Yan Shi, Mao-Lin Cai, Tao Wang, Zu-Jin Luo\",\"doi\":\"10.3390/bioengineering12090963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanical ventilation is indispensable for patients with severe respiratory conditions, and high-fidelity lung simulators play a pivotal role in ventilator testing, clinical training, and respiratory research. However, most existing simulators are passive, single-lung models with limited and discrete control over respiratory mechanics, which constrains their ability to reproduce realistic breathing dynamics. To overcome these limitations, this study presents a dual-chamber lung simulator that can operate in both active and passive modes. The system integrates a sliding mode controller enhanced by a linear extended state observer, enabling the accurate replication of complex respiratory patterns. In active mode, the simulator allows for the precise tuning of respiratory muscle force profiles, lung compliance, and airway resistance to generate physiologically accurate flow and pressure waveforms. Notably, it can effectively simulate pathological conditions such as acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD) by adjusting key parameters to mimic the characteristic respiratory mechanics of these disorders. Experimental results show that the absolute flow error remains within ±3 L/min, and the response time is under 200 ms, ensuring rapid and reliable performance. In passive mode, the simulator emulates ventilator-dependent conditions, providing continuous adjustability of lung compliance from 30 to 100 mL/cmH2O and airway resistance from 2.01 to 14.67cmH2O/(L/s), with compliance deviations limited to ±5%. This design facilitates fine, continuous modulation of key respiratory parameters, making the system well-suited for evaluating ventilator performance, conducting human-machine interaction studies, and simulating pathological respiratory states.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467682/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12090963\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090963","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Precision-Controlled Bionic Lung Simulator for Dynamic Respiration Simulation.
Mechanical ventilation is indispensable for patients with severe respiratory conditions, and high-fidelity lung simulators play a pivotal role in ventilator testing, clinical training, and respiratory research. However, most existing simulators are passive, single-lung models with limited and discrete control over respiratory mechanics, which constrains their ability to reproduce realistic breathing dynamics. To overcome these limitations, this study presents a dual-chamber lung simulator that can operate in both active and passive modes. The system integrates a sliding mode controller enhanced by a linear extended state observer, enabling the accurate replication of complex respiratory patterns. In active mode, the simulator allows for the precise tuning of respiratory muscle force profiles, lung compliance, and airway resistance to generate physiologically accurate flow and pressure waveforms. Notably, it can effectively simulate pathological conditions such as acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD) by adjusting key parameters to mimic the characteristic respiratory mechanics of these disorders. Experimental results show that the absolute flow error remains within ±3 L/min, and the response time is under 200 ms, ensuring rapid and reliable performance. In passive mode, the simulator emulates ventilator-dependent conditions, providing continuous adjustability of lung compliance from 30 to 100 mL/cmH2O and airway resistance from 2.01 to 14.67cmH2O/(L/s), with compliance deviations limited to ±5%. This design facilitates fine, continuous modulation of key respiratory parameters, making the system well-suited for evaluating ventilator performance, conducting human-machine interaction studies, and simulating pathological respiratory states.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering