{"title":"OCT在玻璃体视网膜手术中的应用现状。","authors":"Shintaro Horie, Takeshi Yoshida, Kyoko Ohno-Matsui","doi":"10.3390/bioengineering12090962","DOIUrl":null,"url":null,"abstract":"<p><p>Optical coherence tomography (OCT) is an indispensable tool in modern ophthalmology, where it is used in prior examinations, among various instruments, to assess macular or vitreoretinal diseases. Pathological macular/retinal conditions are almost always examined and evaluated with OCT before and after treatment. Vitreoretinal surgery is one of the most effective treatment options for vitreoretinal diseases. OCT data collected during the treatment of these diseases has accumulated, leading to the reporting of a variety of novel biomarkers and valuable findings related to OCT usage. Recent substantial developments in technology have brought ultra-high-resolution spectral domain/swept source OCT, ultra-widefield OCT, and OCT angiography into the retinal clinic. Here, we review the basic development of the instrument and general applications of OCT in ophthalmology. Subsequently, we provide up-to-date OCT topics based on observations in vitreoretinal surgery.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467528/pdf/","citationCount":"0","resultStr":"{\"title\":\"Current Topics in OCT Applications in Vitreoretinal Surgery.\",\"authors\":\"Shintaro Horie, Takeshi Yoshida, Kyoko Ohno-Matsui\",\"doi\":\"10.3390/bioengineering12090962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical coherence tomography (OCT) is an indispensable tool in modern ophthalmology, where it is used in prior examinations, among various instruments, to assess macular or vitreoretinal diseases. Pathological macular/retinal conditions are almost always examined and evaluated with OCT before and after treatment. Vitreoretinal surgery is one of the most effective treatment options for vitreoretinal diseases. OCT data collected during the treatment of these diseases has accumulated, leading to the reporting of a variety of novel biomarkers and valuable findings related to OCT usage. Recent substantial developments in technology have brought ultra-high-resolution spectral domain/swept source OCT, ultra-widefield OCT, and OCT angiography into the retinal clinic. Here, we review the basic development of the instrument and general applications of OCT in ophthalmology. Subsequently, we provide up-to-date OCT topics based on observations in vitreoretinal surgery.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467528/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12090962\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090962","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Current Topics in OCT Applications in Vitreoretinal Surgery.
Optical coherence tomography (OCT) is an indispensable tool in modern ophthalmology, where it is used in prior examinations, among various instruments, to assess macular or vitreoretinal diseases. Pathological macular/retinal conditions are almost always examined and evaluated with OCT before and after treatment. Vitreoretinal surgery is one of the most effective treatment options for vitreoretinal diseases. OCT data collected during the treatment of these diseases has accumulated, leading to the reporting of a variety of novel biomarkers and valuable findings related to OCT usage. Recent substantial developments in technology have brought ultra-high-resolution spectral domain/swept source OCT, ultra-widefield OCT, and OCT angiography into the retinal clinic. Here, we review the basic development of the instrument and general applications of OCT in ophthalmology. Subsequently, we provide up-to-date OCT topics based on observations in vitreoretinal surgery.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering