{"title":"治疗性寡核苷酸分析分离技术的最新进展。","authors":"Tímea Dérerová, Zuzana Vosáhlová, Květa Kalíková","doi":"10.1080/17576180.2025.2565141","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic oligonucleotides are an emerging class of drugs designed for gene expression modulation. The increasing number of clinical trials and currently expanding market is facilitating further integration and accessibility of these therapeutics. A crucial step in drug development involves reliable analytical tools for characterization and quality control. For clinical applications, oligonucleotides must be separated and purified to ensure regulatory compliance. However, their analysis represents a complex bioanalytical challenge, grounded in their complex impurity profiles. Chemical stability and binding affinity of oligonucleotide-based therapeutics are enhanced during synthesis by extensive modifications, inducing formation of various synthesis failures or truncated sequences. Furthermore, meeting current guidelines or addressing manufacturing scale-up strategies remains challenging as each oligonucleotide typically necessitates a custom analytical protocol. Here, we provide an overview of the most recent advances in separation methods, including various chromatography methods and capillary electrophoresis for nucleic acid-based therapeutics.</p>","PeriodicalId":8797,"journal":{"name":"Bioanalysis","volume":" ","pages":"1-16"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in analytical separation techniques for therapeutic oligonucleotides.\",\"authors\":\"Tímea Dérerová, Zuzana Vosáhlová, Květa Kalíková\",\"doi\":\"10.1080/17576180.2025.2565141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Therapeutic oligonucleotides are an emerging class of drugs designed for gene expression modulation. The increasing number of clinical trials and currently expanding market is facilitating further integration and accessibility of these therapeutics. A crucial step in drug development involves reliable analytical tools for characterization and quality control. For clinical applications, oligonucleotides must be separated and purified to ensure regulatory compliance. However, their analysis represents a complex bioanalytical challenge, grounded in their complex impurity profiles. Chemical stability and binding affinity of oligonucleotide-based therapeutics are enhanced during synthesis by extensive modifications, inducing formation of various synthesis failures or truncated sequences. Furthermore, meeting current guidelines or addressing manufacturing scale-up strategies remains challenging as each oligonucleotide typically necessitates a custom analytical protocol. Here, we provide an overview of the most recent advances in separation methods, including various chromatography methods and capillary electrophoresis for nucleic acid-based therapeutics.</p>\",\"PeriodicalId\":8797,\"journal\":{\"name\":\"Bioanalysis\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioanalysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17576180.2025.2565141\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioanalysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17576180.2025.2565141","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Recent advances in analytical separation techniques for therapeutic oligonucleotides.
Therapeutic oligonucleotides are an emerging class of drugs designed for gene expression modulation. The increasing number of clinical trials and currently expanding market is facilitating further integration and accessibility of these therapeutics. A crucial step in drug development involves reliable analytical tools for characterization and quality control. For clinical applications, oligonucleotides must be separated and purified to ensure regulatory compliance. However, their analysis represents a complex bioanalytical challenge, grounded in their complex impurity profiles. Chemical stability and binding affinity of oligonucleotide-based therapeutics are enhanced during synthesis by extensive modifications, inducing formation of various synthesis failures or truncated sequences. Furthermore, meeting current guidelines or addressing manufacturing scale-up strategies remains challenging as each oligonucleotide typically necessitates a custom analytical protocol. Here, we provide an overview of the most recent advances in separation methods, including various chromatography methods and capillary electrophoresis for nucleic acid-based therapeutics.
BioanalysisBIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
3.30
自引率
16.70%
发文量
88
审稿时长
2 months
期刊介绍:
Reliable data obtained from selective, sensitive and reproducible analysis of xenobiotics and biotics in biological samples is a fundamental and crucial part of every successful drug development program. The same principles can also apply to many other areas of research such as forensic science, toxicology and sports doping testing.
The bioanalytical field incorporates sophisticated techniques linking sample preparation and advanced separations with MS and NMR detection systems, automation and robotics. Standards set by regulatory bodies regarding method development and validation increasingly define the boundaries between speed and quality.
Bioanalysis is a progressive discipline for which the future holds many exciting opportunities to further reduce sample volumes, analysis cost and environmental impact, as well as to improve sensitivity, specificity, accuracy, efficiency, assay throughput, data quality, data handling and processing.
The journal Bioanalysis focuses on the techniques and methods used for the detection or quantitative study of analytes in human or animal biological samples. Bioanalysis encourages the submission of articles describing forward-looking applications, including biosensors, microfluidics, miniaturized analytical devices, and new hyphenated and multi-dimensional techniques.
Bioanalysis delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for the modern bioanalyst.