CFR-PEEK和金属骨植入物发生磨损的临床证据:系统的文献综述。

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Remco Doodkorte, Rachèl Kuske, Jacobus Arts
{"title":"CFR-PEEK和金属骨植入物发生磨损的临床证据:系统的文献综述。","authors":"Remco Doodkorte, Rachèl Kuske, Jacobus Arts","doi":"10.3390/bioengineering12090965","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon fiber-reinforced polyetheretherketone (CFR-PEEK) as an alternative to metallics in orthopedic implants offers biomechanical and radiological advantages. However, the extent of wear particle generation and its clinical impact are unclear. This systematic review evaluates clinical evidence of wear in fracture fixation devices. A systematic search was conducted to identify clinical studies reporting wear of metallic and CFR-PEEK implants used in extremities. Nineteen studies were included: three prospective cohorts, eight retrospective cohorts, one case series, and six case reports. Among 208 fixation plates, 43 were CFR-PEEK and all 93 intramedullary nails were metallic. Risk of bias ranged from low to serious, mainly due to selection bias. Wear-related complications were reported for both materials. Metallic implants showed elevated serum ion levels, metallic debris in tissues, and, in some cases, metallosis. CFR-PEEK implants showed limited evidence of carbon fiber fragments near implants. One comparative study reported higher inflammatory responses in CFR-PEEK explants, though no direct link between debris and implant removal was found. Both metallic and CFR-PEEK fracture fixation devices generate wear particles, which may induce biological responses. However, wear-related complications appear rare, especially with validated implant designs, and clinical significance of wear debris remains limited.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467306/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clinical Evidence of Wear Occurrence in CFR-PEEK and Metallic Osteosynthesis Implants: A Systematic Literature Review.\",\"authors\":\"Remco Doodkorte, Rachèl Kuske, Jacobus Arts\",\"doi\":\"10.3390/bioengineering12090965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon fiber-reinforced polyetheretherketone (CFR-PEEK) as an alternative to metallics in orthopedic implants offers biomechanical and radiological advantages. However, the extent of wear particle generation and its clinical impact are unclear. This systematic review evaluates clinical evidence of wear in fracture fixation devices. A systematic search was conducted to identify clinical studies reporting wear of metallic and CFR-PEEK implants used in extremities. Nineteen studies were included: three prospective cohorts, eight retrospective cohorts, one case series, and six case reports. Among 208 fixation plates, 43 were CFR-PEEK and all 93 intramedullary nails were metallic. Risk of bias ranged from low to serious, mainly due to selection bias. Wear-related complications were reported for both materials. Metallic implants showed elevated serum ion levels, metallic debris in tissues, and, in some cases, metallosis. CFR-PEEK implants showed limited evidence of carbon fiber fragments near implants. One comparative study reported higher inflammatory responses in CFR-PEEK explants, though no direct link between debris and implant removal was found. Both metallic and CFR-PEEK fracture fixation devices generate wear particles, which may induce biological responses. However, wear-related complications appear rare, especially with validated implant designs, and clinical significance of wear debris remains limited.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467306/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12090965\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090965","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

碳纤维增强聚醚醚酮(CFR-PEEK)作为金属材料的替代品,在骨科植入物中具有生物力学和放射学方面的优势。然而,磨损颗粒产生的程度及其临床影响尚不清楚。本系统综述评估骨折固定装置磨损的临床证据。我们进行了系统的检索,以确定用于四肢的金属和CFR-PEEK植入物磨损的临床研究。纳入了19项研究:3个前瞻性队列,8个回顾性队列,1个病例系列和6个病例报告。208个固定板中43个为CFR-PEEK, 93个髓内钉均为金属。偏倚风险从低到严重,主要是由于选择偏倚。两种材料均有磨损相关并发症的报道。金属植入物显示血清离子水平升高,组织中有金属碎片,在某些情况下出现金属病。CFR-PEEK植入物在植入物附近显示有限的碳纤维碎片证据。一项比较研究报告了CFR-PEEK外植体更高的炎症反应,尽管没有发现碎片和植入物移除之间的直接联系。金属和CFR-PEEK骨折固定装置都会产生磨损颗粒,并可能引起生物反应。然而,磨损相关的并发症很少出现,特别是经过验证的种植体设计,并且磨损碎片的临床意义仍然有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clinical Evidence of Wear Occurrence in CFR-PEEK and Metallic Osteosynthesis Implants: A Systematic Literature Review.

Carbon fiber-reinforced polyetheretherketone (CFR-PEEK) as an alternative to metallics in orthopedic implants offers biomechanical and radiological advantages. However, the extent of wear particle generation and its clinical impact are unclear. This systematic review evaluates clinical evidence of wear in fracture fixation devices. A systematic search was conducted to identify clinical studies reporting wear of metallic and CFR-PEEK implants used in extremities. Nineteen studies were included: three prospective cohorts, eight retrospective cohorts, one case series, and six case reports. Among 208 fixation plates, 43 were CFR-PEEK and all 93 intramedullary nails were metallic. Risk of bias ranged from low to serious, mainly due to selection bias. Wear-related complications were reported for both materials. Metallic implants showed elevated serum ion levels, metallic debris in tissues, and, in some cases, metallosis. CFR-PEEK implants showed limited evidence of carbon fiber fragments near implants. One comparative study reported higher inflammatory responses in CFR-PEEK explants, though no direct link between debris and implant removal was found. Both metallic and CFR-PEEK fracture fixation devices generate wear particles, which may induce biological responses. However, wear-related complications appear rare, especially with validated implant designs, and clinical significance of wear debris remains limited.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信