{"title":"基于oct的疾病诊断综述:从特征提取方法到鲁棒安全框架。","authors":"Alex Liew, Sos Agaian","doi":"10.3390/bioengineering12090914","DOIUrl":null,"url":null,"abstract":"<p><p>Optical coherence tomography (OCT) is a leading imaging technique for diagnosing retinal disorders such as age-related macular degeneration and diabetic retinopathy. Its ability to detect structural changes, especially in the optic nerve head, has made it vital for early diagnosis and monitoring. This paper surveys techniques for ocular disease prediction using OCT, focusing on both hand-crafted and deep learning-based feature extractors. While the field has seen rapid growth, a detailed comparative analysis of these methods has been lacking. We address this by reviewing research from the past 20 years, evaluating methods based on accuracy, sensitivity, specificity, and computational cost. Key diseases examined include glaucoma, diabetic retinopathy, cataracts, amblyopia, and macular degeneration. We also assess public OCT datasets widely used in model development. A unique contribution of this paper is the exploration of adversarial attacks targeting OCT-based diagnostic systems and the vulnerabilities of different feature extraction techniques. We propose a practical, robust defense strategy that integrates with existing models and outperforms current solutions. Our findings emphasize the value of combining classical and deep learning methods with strong defenses to enhance the security and reliability of OCT-based diagnostics, and we offer guidance for future research and clinical integration.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467681/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Survey of OCT-Based Disorders Diagnosis: From Feature Extraction Methods to Robust Security Frameworks.\",\"authors\":\"Alex Liew, Sos Agaian\",\"doi\":\"10.3390/bioengineering12090914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical coherence tomography (OCT) is a leading imaging technique for diagnosing retinal disorders such as age-related macular degeneration and diabetic retinopathy. Its ability to detect structural changes, especially in the optic nerve head, has made it vital for early diagnosis and monitoring. This paper surveys techniques for ocular disease prediction using OCT, focusing on both hand-crafted and deep learning-based feature extractors. While the field has seen rapid growth, a detailed comparative analysis of these methods has been lacking. We address this by reviewing research from the past 20 years, evaluating methods based on accuracy, sensitivity, specificity, and computational cost. Key diseases examined include glaucoma, diabetic retinopathy, cataracts, amblyopia, and macular degeneration. We also assess public OCT datasets widely used in model development. A unique contribution of this paper is the exploration of adversarial attacks targeting OCT-based diagnostic systems and the vulnerabilities of different feature extraction techniques. We propose a practical, robust defense strategy that integrates with existing models and outperforms current solutions. Our findings emphasize the value of combining classical and deep learning methods with strong defenses to enhance the security and reliability of OCT-based diagnostics, and we offer guidance for future research and clinical integration.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467681/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12090914\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090914","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Comprehensive Survey of OCT-Based Disorders Diagnosis: From Feature Extraction Methods to Robust Security Frameworks.
Optical coherence tomography (OCT) is a leading imaging technique for diagnosing retinal disorders such as age-related macular degeneration and diabetic retinopathy. Its ability to detect structural changes, especially in the optic nerve head, has made it vital for early diagnosis and monitoring. This paper surveys techniques for ocular disease prediction using OCT, focusing on both hand-crafted and deep learning-based feature extractors. While the field has seen rapid growth, a detailed comparative analysis of these methods has been lacking. We address this by reviewing research from the past 20 years, evaluating methods based on accuracy, sensitivity, specificity, and computational cost. Key diseases examined include glaucoma, diabetic retinopathy, cataracts, amblyopia, and macular degeneration. We also assess public OCT datasets widely used in model development. A unique contribution of this paper is the exploration of adversarial attacks targeting OCT-based diagnostic systems and the vulnerabilities of different feature extraction techniques. We propose a practical, robust defense strategy that integrates with existing models and outperforms current solutions. Our findings emphasize the value of combining classical and deep learning methods with strong defenses to enhance the security and reliability of OCT-based diagnostics, and we offer guidance for future research and clinical integration.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering