{"title":"神经网络与回归线性模型在透析机部件预测性维护中的性能比较。","authors":"Alessia Nicosia, Nunzio Cancilla, Michele Passerini, Francesca Sau, Ilenia Tinnirello, Andrea Cipollina","doi":"10.3390/bioengineering12090941","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring the reliability of dialysis machines and their components, such as sensors and actuators, is critical for maintaining continuous and safe dialysis treatment for patients with chronic kidney disease. This study investigates the application of Artificial Intelligence for detecting drift in dialysis machine components by comparing a Long Short-Term Memory (LSTM) neural network with a traditional linear regression model. Both models were trained to learn normal patterns from time-dependent signals monitoring the performance of specific components of a dialytic machine, such as a weight loss sensor in the present case, enabling the detection of anomalies related to sensor degradation or failure. Real-world data from multiple clinical cases were used to validate the approach. The LSTM model achieved high reconstruction accuracy on normal signals (most errors < 0.02, maximum ≈ 0.08), and successfully detected anomalies exceeding this threshold in complaint cases, where the model anticipated failures up to five days in advance. On the contrary, the linear regression model was limited to detecting only major deviations. These findings highlighted the advantages of AI-based methods in equipment monitoring, minimizing unplanned downtime, and supporting preventive maintenance strategies within dialysis care. Future work will focus on integrating this model into both clinical and home dialysis settings, aiming to develop a scalable, adaptable, and generalizable solution capable of operating effectively across various conditions.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467923/pdf/","citationCount":"0","resultStr":"{\"title\":\"Performance Comparison of a Neural Network and a Regression Linear Model for Predictive Maintenance in Dialysis Machine Components.\",\"authors\":\"Alessia Nicosia, Nunzio Cancilla, Michele Passerini, Francesca Sau, Ilenia Tinnirello, Andrea Cipollina\",\"doi\":\"10.3390/bioengineering12090941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ensuring the reliability of dialysis machines and their components, such as sensors and actuators, is critical for maintaining continuous and safe dialysis treatment for patients with chronic kidney disease. This study investigates the application of Artificial Intelligence for detecting drift in dialysis machine components by comparing a Long Short-Term Memory (LSTM) neural network with a traditional linear regression model. Both models were trained to learn normal patterns from time-dependent signals monitoring the performance of specific components of a dialytic machine, such as a weight loss sensor in the present case, enabling the detection of anomalies related to sensor degradation or failure. Real-world data from multiple clinical cases were used to validate the approach. The LSTM model achieved high reconstruction accuracy on normal signals (most errors < 0.02, maximum ≈ 0.08), and successfully detected anomalies exceeding this threshold in complaint cases, where the model anticipated failures up to five days in advance. On the contrary, the linear regression model was limited to detecting only major deviations. These findings highlighted the advantages of AI-based methods in equipment monitoring, minimizing unplanned downtime, and supporting preventive maintenance strategies within dialysis care. Future work will focus on integrating this model into both clinical and home dialysis settings, aiming to develop a scalable, adaptable, and generalizable solution capable of operating effectively across various conditions.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467923/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12090941\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090941","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Performance Comparison of a Neural Network and a Regression Linear Model for Predictive Maintenance in Dialysis Machine Components.
Ensuring the reliability of dialysis machines and their components, such as sensors and actuators, is critical for maintaining continuous and safe dialysis treatment for patients with chronic kidney disease. This study investigates the application of Artificial Intelligence for detecting drift in dialysis machine components by comparing a Long Short-Term Memory (LSTM) neural network with a traditional linear regression model. Both models were trained to learn normal patterns from time-dependent signals monitoring the performance of specific components of a dialytic machine, such as a weight loss sensor in the present case, enabling the detection of anomalies related to sensor degradation or failure. Real-world data from multiple clinical cases were used to validate the approach. The LSTM model achieved high reconstruction accuracy on normal signals (most errors < 0.02, maximum ≈ 0.08), and successfully detected anomalies exceeding this threshold in complaint cases, where the model anticipated failures up to five days in advance. On the contrary, the linear regression model was limited to detecting only major deviations. These findings highlighted the advantages of AI-based methods in equipment monitoring, minimizing unplanned downtime, and supporting preventive maintenance strategies within dialysis care. Future work will focus on integrating this model into both clinical and home dialysis settings, aiming to develop a scalable, adaptable, and generalizable solution capable of operating effectively across various conditions.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering