Na Feng, Chengwei Chen, Peng Du, Chengrong Gong, Jianming Pei, Dong Huang
{"title":"MS-LTCAF:用于心电心律失常检测的多尺度导联-时间协同注意框架。","authors":"Na Feng, Chengwei Chen, Peng Du, Chengrong Gong, Jianming Pei, Dong Huang","doi":"10.3390/bioengineering12091007","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases are the leading cause of death worldwide, with arrhythmia being a prevalent and potentially fatal condition. The multi-lead electrocardiogram (ECG) is the primary tool for detecting arrhythmias. However, existing detection methods have shortcomings: they cannot dynamically integrate inter-lead correlations with multi-scale temporal changes in cardiac electrical activity. They also lack mechanisms to simultaneously focus on key leads and time segments, and thus fail to address multi-lead redundancy or capture comprehensive spatial-temporal relationships. To solve these problems, we propose a Multi-Scale Lead-Temporal Co-Attention Framework (MS-LTCAF). Our framework incorporates two key components: a Lead-Temporal Co-Attention Residual (LTCAR) module that dynamically weights the importance of leads and time segments, and a multi-scale branch structure that integrates features of cardiac electrical activity across different time periods. Together, these components enable the framework to automatically extract and integrate features within a single lead, between different leads, and across multiple time scales from ECG signals. Experimental results demonstrate that MS-LTCAF outperforms existing methods. On the PTB-XL dataset, it achieves an AUC of 0.927, approximately 1% higher than the current optimal baseline model (DNN_zhu's 0.918). On the LUDB dataset, it ranks first in terms of AUC (0.942), accuracy (0.920), and F1-score (0.745). Furthermore, the framework can focus on key leads and time segments through the co-attention mechanism, while the multi-scale branches help capture both the details of local waveforms (such as QRS complexes) and the overall rhythm patterns (such as RR intervals).</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467215/pdf/","citationCount":"0","resultStr":"{\"title\":\"MS-LTCAF: A Multi-Scale Lead-Temporal Co-Attention Framework for ECG Arrhythmia Detection.\",\"authors\":\"Na Feng, Chengwei Chen, Peng Du, Chengrong Gong, Jianming Pei, Dong Huang\",\"doi\":\"10.3390/bioengineering12091007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular diseases are the leading cause of death worldwide, with arrhythmia being a prevalent and potentially fatal condition. The multi-lead electrocardiogram (ECG) is the primary tool for detecting arrhythmias. However, existing detection methods have shortcomings: they cannot dynamically integrate inter-lead correlations with multi-scale temporal changes in cardiac electrical activity. They also lack mechanisms to simultaneously focus on key leads and time segments, and thus fail to address multi-lead redundancy or capture comprehensive spatial-temporal relationships. To solve these problems, we propose a Multi-Scale Lead-Temporal Co-Attention Framework (MS-LTCAF). Our framework incorporates two key components: a Lead-Temporal Co-Attention Residual (LTCAR) module that dynamically weights the importance of leads and time segments, and a multi-scale branch structure that integrates features of cardiac electrical activity across different time periods. Together, these components enable the framework to automatically extract and integrate features within a single lead, between different leads, and across multiple time scales from ECG signals. Experimental results demonstrate that MS-LTCAF outperforms existing methods. On the PTB-XL dataset, it achieves an AUC of 0.927, approximately 1% higher than the current optimal baseline model (DNN_zhu's 0.918). On the LUDB dataset, it ranks first in terms of AUC (0.942), accuracy (0.920), and F1-score (0.745). Furthermore, the framework can focus on key leads and time segments through the co-attention mechanism, while the multi-scale branches help capture both the details of local waveforms (such as QRS complexes) and the overall rhythm patterns (such as RR intervals).</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467215/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12091007\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12091007","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
MS-LTCAF: A Multi-Scale Lead-Temporal Co-Attention Framework for ECG Arrhythmia Detection.
Cardiovascular diseases are the leading cause of death worldwide, with arrhythmia being a prevalent and potentially fatal condition. The multi-lead electrocardiogram (ECG) is the primary tool for detecting arrhythmias. However, existing detection methods have shortcomings: they cannot dynamically integrate inter-lead correlations with multi-scale temporal changes in cardiac electrical activity. They also lack mechanisms to simultaneously focus on key leads and time segments, and thus fail to address multi-lead redundancy or capture comprehensive spatial-temporal relationships. To solve these problems, we propose a Multi-Scale Lead-Temporal Co-Attention Framework (MS-LTCAF). Our framework incorporates two key components: a Lead-Temporal Co-Attention Residual (LTCAR) module that dynamically weights the importance of leads and time segments, and a multi-scale branch structure that integrates features of cardiac electrical activity across different time periods. Together, these components enable the framework to automatically extract and integrate features within a single lead, between different leads, and across multiple time scales from ECG signals. Experimental results demonstrate that MS-LTCAF outperforms existing methods. On the PTB-XL dataset, it achieves an AUC of 0.927, approximately 1% higher than the current optimal baseline model (DNN_zhu's 0.918). On the LUDB dataset, it ranks first in terms of AUC (0.942), accuracy (0.920), and F1-score (0.745). Furthermore, the framework can focus on key leads and time segments through the co-attention mechanism, while the multi-scale branches help capture both the details of local waveforms (such as QRS complexes) and the overall rhythm patterns (such as RR intervals).
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering