{"title":"左心室心脏生物力学的有限元建模:从计算工具到临床实践。","authors":"Patrick Hoang, Julius Guccione","doi":"10.3390/bioengineering12090913","DOIUrl":null,"url":null,"abstract":"<p><p>Finite element (FE) modeling has emerged as a powerful computational approach in cardiovascular biomechanics, enabling detailed simulations of myocardial stress, strain, and hemodynamics, which are challenging to measure with conventional imaging techniques. This narrative review explores the progression of cardiac FE modeling from research-focused applications to its increasing integration into clinical practice. Specific attention is given to the mechanical effects of myocardial infarction, the limitations of conventional LV volume-reduction surgeries, and novel therapeutic approaches like passive myocardial reinforcement via hydrogel injections. Furthermore, the review highlights the critical role of patient-specific FE simulations in optimizing LV assist device parameters and guiding targeted device placements. Cutting-edge developments in artificial intelligence-enhanced FE modeling, including surrogate models and precomputed simulation databases, are examined for their potential to facilitate real-time, personalized therapeutic decision-making. Collectively, these advancements position FE modeling as an essential tool in precision medicine for structural heart disease.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467504/pdf/","citationCount":"0","resultStr":"{\"title\":\"Finite Element Modeling in Left Ventricular Cardiac Biomechanics: From Computational Tool to Clinical Practice.\",\"authors\":\"Patrick Hoang, Julius Guccione\",\"doi\":\"10.3390/bioengineering12090913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Finite element (FE) modeling has emerged as a powerful computational approach in cardiovascular biomechanics, enabling detailed simulations of myocardial stress, strain, and hemodynamics, which are challenging to measure with conventional imaging techniques. This narrative review explores the progression of cardiac FE modeling from research-focused applications to its increasing integration into clinical practice. Specific attention is given to the mechanical effects of myocardial infarction, the limitations of conventional LV volume-reduction surgeries, and novel therapeutic approaches like passive myocardial reinforcement via hydrogel injections. Furthermore, the review highlights the critical role of patient-specific FE simulations in optimizing LV assist device parameters and guiding targeted device placements. Cutting-edge developments in artificial intelligence-enhanced FE modeling, including surrogate models and precomputed simulation databases, are examined for their potential to facilitate real-time, personalized therapeutic decision-making. Collectively, these advancements position FE modeling as an essential tool in precision medicine for structural heart disease.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467504/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12090913\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090913","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Finite Element Modeling in Left Ventricular Cardiac Biomechanics: From Computational Tool to Clinical Practice.
Finite element (FE) modeling has emerged as a powerful computational approach in cardiovascular biomechanics, enabling detailed simulations of myocardial stress, strain, and hemodynamics, which are challenging to measure with conventional imaging techniques. This narrative review explores the progression of cardiac FE modeling from research-focused applications to its increasing integration into clinical practice. Specific attention is given to the mechanical effects of myocardial infarction, the limitations of conventional LV volume-reduction surgeries, and novel therapeutic approaches like passive myocardial reinforcement via hydrogel injections. Furthermore, the review highlights the critical role of patient-specific FE simulations in optimizing LV assist device parameters and guiding targeted device placements. Cutting-edge developments in artificial intelligence-enhanced FE modeling, including surrogate models and precomputed simulation databases, are examined for their potential to facilitate real-time, personalized therapeutic decision-making. Collectively, these advancements position FE modeling as an essential tool in precision medicine for structural heart disease.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering