R L Dalton, S A Robinson, A J Bartlett, V Sesin, H Ben Othman, D J Carpenter, A Morrill, R Prosser, J Rohonczy, F R Pick
{"title":"水生除草剂Diquat对非目标水生生物的影响:一项中生态研究。","authors":"R L Dalton, S A Robinson, A J Bartlett, V Sesin, H Ben Othman, D J Carpenter, A Morrill, R Prosser, J Rohonczy, F R Pick","doi":"10.1007/s00244-025-01161-6","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive aquatic plants threaten the health of aquatic ecosystems, and demand for chemical control is likely to increase as nuisance levels are reached. Diquat is a contact herbicide registered in many countries to control invasive aquatic plants. The objective of our study was to assess the effects of the aquatic herbicide diquat (Reward®) on North American native and non-native plants, algal communities, an amphipod and an amphibian using outdoor mesocosms to simulate natural systems. Our experimental design included a control and five nominal concentrations of diquat ranging from 100% (18.3 L/ha; 1153 µg/L) to 6.4% (1.2 L/ha; 74 µg/L) of the label rate of a single diquat application. Effects of diquat were found to vary among study organisms. All four plant species were negatively affected at all concentrations, exhibiting either mortality or severe reductions in dry biomass (< 1% the biomass of the controls). In contrast, phytoplankton biomass increased 7 d following diquat application concomitant with significant changes in algal community structure. A concentration-response relationship was observed for amphipod survival (LC<sub>50</sub> at 6 weeks = 155 µg/L) with 100% mortality in the highest treatment after two weeks. In contrast, diquat had a significant positive effect on tadpole survival, growth and development, possibly because of the higher algal biomass and decaying plant tissues. A lower label rate than currently recommended, at least in waterbodies with low turbidity, could provide effective control of target species while reducing effects on non-target biota.</p>","PeriodicalId":8377,"journal":{"name":"Archives of Environmental Contamination and Toxicology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the Aquatic Herbicide Diquat on Non-Target Aquatic Biota: A Mesocosm Study.\",\"authors\":\"R L Dalton, S A Robinson, A J Bartlett, V Sesin, H Ben Othman, D J Carpenter, A Morrill, R Prosser, J Rohonczy, F R Pick\",\"doi\":\"10.1007/s00244-025-01161-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Invasive aquatic plants threaten the health of aquatic ecosystems, and demand for chemical control is likely to increase as nuisance levels are reached. Diquat is a contact herbicide registered in many countries to control invasive aquatic plants. The objective of our study was to assess the effects of the aquatic herbicide diquat (Reward®) on North American native and non-native plants, algal communities, an amphipod and an amphibian using outdoor mesocosms to simulate natural systems. Our experimental design included a control and five nominal concentrations of diquat ranging from 100% (18.3 L/ha; 1153 µg/L) to 6.4% (1.2 L/ha; 74 µg/L) of the label rate of a single diquat application. Effects of diquat were found to vary among study organisms. All four plant species were negatively affected at all concentrations, exhibiting either mortality or severe reductions in dry biomass (< 1% the biomass of the controls). In contrast, phytoplankton biomass increased 7 d following diquat application concomitant with significant changes in algal community structure. A concentration-response relationship was observed for amphipod survival (LC<sub>50</sub> at 6 weeks = 155 µg/L) with 100% mortality in the highest treatment after two weeks. In contrast, diquat had a significant positive effect on tadpole survival, growth and development, possibly because of the higher algal biomass and decaying plant tissues. A lower label rate than currently recommended, at least in waterbodies with low turbidity, could provide effective control of target species while reducing effects on non-target biota.</p>\",\"PeriodicalId\":8377,\"journal\":{\"name\":\"Archives of Environmental Contamination and Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Environmental Contamination and Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00244-025-01161-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00244-025-01161-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effects of the Aquatic Herbicide Diquat on Non-Target Aquatic Biota: A Mesocosm Study.
Invasive aquatic plants threaten the health of aquatic ecosystems, and demand for chemical control is likely to increase as nuisance levels are reached. Diquat is a contact herbicide registered in many countries to control invasive aquatic plants. The objective of our study was to assess the effects of the aquatic herbicide diquat (Reward®) on North American native and non-native plants, algal communities, an amphipod and an amphibian using outdoor mesocosms to simulate natural systems. Our experimental design included a control and five nominal concentrations of diquat ranging from 100% (18.3 L/ha; 1153 µg/L) to 6.4% (1.2 L/ha; 74 µg/L) of the label rate of a single diquat application. Effects of diquat were found to vary among study organisms. All four plant species were negatively affected at all concentrations, exhibiting either mortality or severe reductions in dry biomass (< 1% the biomass of the controls). In contrast, phytoplankton biomass increased 7 d following diquat application concomitant with significant changes in algal community structure. A concentration-response relationship was observed for amphipod survival (LC50 at 6 weeks = 155 µg/L) with 100% mortality in the highest treatment after two weeks. In contrast, diquat had a significant positive effect on tadpole survival, growth and development, possibly because of the higher algal biomass and decaying plant tissues. A lower label rate than currently recommended, at least in waterbodies with low turbidity, could provide effective control of target species while reducing effects on non-target biota.
期刊介绍:
Archives of Environmental Contamination and Toxicology provides a place for the publication of timely, detailed, and definitive scientific studies pertaining to the source, transport, fate and / or effects of contaminants in the environment. The journal will consider submissions dealing with new analytical and toxicological techniques that advance our understanding of the source, transport, fate and / or effects of contaminants in the environment. AECT will now consider mini-reviews (where length including references is less than 5,000 words), which highlight case studies, a geographic topic of interest, or a timely subject of debate. AECT will also consider Special Issues on subjects of broad interest. The journal strongly encourages authors to ensure that their submission places a strong emphasis on ecosystem processes; submissions limited to technical aspects of such areas as toxicity testing for single chemicals, wastewater effluent characterization, human occupation exposure, or agricultural phytotoxicity are unlikely to be considered.