{"title":"感觉寻找的数字表型:一种使用步态分析的机器学习方法。","authors":"Ang Li, Keyu Yang","doi":"10.3390/bs15091222","DOIUrl":null,"url":null,"abstract":"<p><p>Sensation seeking represents a significant risk factor for various mental health disorders and maladaptive behaviors, highlighting the need for objective assessment methods that circumvent the limitations of traditional self-report measures. This study introduces an innovative digital phenotyping approach that combines computational gait analysis with machine learning (ML) to quantify sensation-seeking traits and examines its validity. Natural gait sequences (using a Sony camera at 25 FPS) and self-report measures (Brief Sensation-Seeking Scale for Chinese, BSSS-C) were collected from 233 healthy adults. Computer vision processing through OpenPose extracted 25 skeletal keypoints, which were subsequently transformed into a hip-centered coordinate system and denoised using Gaussian filtering. From these kinematic data, 300 temporospatial gait features capturing various aspects of movement dynamics were derived. Using a supervised ML approach with feature selection, three ML models (SMO Regression, Multilayer Perceptron, and Bagging) were developed and compared through 10-fold cross-validation. The SMO Regression model demonstrated superior performance (<i>r</i> = 0.60, MAE = 3.50, RMSE = 4.59, R<sup>2</sup> = 0.26), outperforming the other approaches. These results establish proof-of-concept for gait-based digital phenotyping of sensation seeking, offering a scalable, objective assessment paradigm with potential applications in clinical screening and behavioral research. The methodological framework presented here advances the field of behavioral biometrics by demonstrating how computer vision and ML can transform basic movement patterns into meaningful psychological indicators.</p>","PeriodicalId":8742,"journal":{"name":"Behavioral Sciences","volume":"15 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467810/pdf/","citationCount":"0","resultStr":"{\"title\":\"Digital Phenotyping of Sensation Seeking: A Machine Learning Approach Using Gait Analysis.\",\"authors\":\"Ang Li, Keyu Yang\",\"doi\":\"10.3390/bs15091222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sensation seeking represents a significant risk factor for various mental health disorders and maladaptive behaviors, highlighting the need for objective assessment methods that circumvent the limitations of traditional self-report measures. This study introduces an innovative digital phenotyping approach that combines computational gait analysis with machine learning (ML) to quantify sensation-seeking traits and examines its validity. Natural gait sequences (using a Sony camera at 25 FPS) and self-report measures (Brief Sensation-Seeking Scale for Chinese, BSSS-C) were collected from 233 healthy adults. Computer vision processing through OpenPose extracted 25 skeletal keypoints, which were subsequently transformed into a hip-centered coordinate system and denoised using Gaussian filtering. From these kinematic data, 300 temporospatial gait features capturing various aspects of movement dynamics were derived. Using a supervised ML approach with feature selection, three ML models (SMO Regression, Multilayer Perceptron, and Bagging) were developed and compared through 10-fold cross-validation. The SMO Regression model demonstrated superior performance (<i>r</i> = 0.60, MAE = 3.50, RMSE = 4.59, R<sup>2</sup> = 0.26), outperforming the other approaches. These results establish proof-of-concept for gait-based digital phenotyping of sensation seeking, offering a scalable, objective assessment paradigm with potential applications in clinical screening and behavioral research. The methodological framework presented here advances the field of behavioral biometrics by demonstrating how computer vision and ML can transform basic movement patterns into meaningful psychological indicators.</p>\",\"PeriodicalId\":8742,\"journal\":{\"name\":\"Behavioral Sciences\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467810/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3390/bs15091222\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3390/bs15091222","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Digital Phenotyping of Sensation Seeking: A Machine Learning Approach Using Gait Analysis.
Sensation seeking represents a significant risk factor for various mental health disorders and maladaptive behaviors, highlighting the need for objective assessment methods that circumvent the limitations of traditional self-report measures. This study introduces an innovative digital phenotyping approach that combines computational gait analysis with machine learning (ML) to quantify sensation-seeking traits and examines its validity. Natural gait sequences (using a Sony camera at 25 FPS) and self-report measures (Brief Sensation-Seeking Scale for Chinese, BSSS-C) were collected from 233 healthy adults. Computer vision processing through OpenPose extracted 25 skeletal keypoints, which were subsequently transformed into a hip-centered coordinate system and denoised using Gaussian filtering. From these kinematic data, 300 temporospatial gait features capturing various aspects of movement dynamics were derived. Using a supervised ML approach with feature selection, three ML models (SMO Regression, Multilayer Perceptron, and Bagging) were developed and compared through 10-fold cross-validation. The SMO Regression model demonstrated superior performance (r = 0.60, MAE = 3.50, RMSE = 4.59, R2 = 0.26), outperforming the other approaches. These results establish proof-of-concept for gait-based digital phenotyping of sensation seeking, offering a scalable, objective assessment paradigm with potential applications in clinical screening and behavioral research. The methodological framework presented here advances the field of behavioral biometrics by demonstrating how computer vision and ML can transform basic movement patterns into meaningful psychological indicators.