Manikandan Santhanam, Venkatadri Babu, Anna Shteinfer-Kuzmine, Ran Zalk, Varda Shoshan-Barmaz
{"title":"vdac1相互作用蛋白:结合位点定位及其衍生肽诱导细胞凋亡和多方面细胞效应。","authors":"Manikandan Santhanam, Venkatadri Babu, Anna Shteinfer-Kuzmine, Ran Zalk, Varda Shoshan-Barmaz","doi":"10.1007/s10495-025-02185-y","DOIUrl":null,"url":null,"abstract":"<p><p>The mitochondrial voltage-dependent anion channel-1 (VDAC1) protein plays a central role in regulating mitochondrial metabolism, energy production, and apoptosis. VDAC1 interacts with over 100 proteins across the cytosol, endoplasmic reticulum, plasma membrane, and mitochondrial membranes. These interactions coordinate metabolism, cell death, and signal transduction, integrating mitochondrial and cellular functions. To identify VDAC1 binding sites, we designed a peptide array of 768 peptides from 19 selected VDAC1-interacting proteins. We focused on three partners: GAPDH, gelsolin, and actin. Their VDAC1-binding sequences as peptides interacted with purified VDAC1 and, as cell-penetrating peptides, induced cell death, and elevated intracellular Ca<sup>2</sup>⁺ and ROS levels. Despite sequence diversity, the peptides converged on enhancing transcription factors p53 and c-Jun, upregulating VDAC1, promoting its oligomerization, and triggering apoptosis. Other effects related to their originated protein's function include no significant effect of the GAPDH-derived peptide on its catalytic activity, indicating its effects are independent of glycolysis. The gelsolin-derived peptide altered actin organization, increasing filopodia and focal adhesion, and actin-derived peptides reduced actin, gelsolin, and tubulin expression. This study is the first to identify VDAC1 binding sites on 19 interacting partners and to demonstrate their use as cell-penetrating peptides to modulate the VDAC1 network. These findings highlight VDAC1's multifaceted regulatory role and offer a novel approach for targeting VDAC1-protein interactions for therapeutic purposes.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VDAC1-interacting proteins: binding site mapping and their derived peptides induce apoptosis and multifaceted cellular effects.\",\"authors\":\"Manikandan Santhanam, Venkatadri Babu, Anna Shteinfer-Kuzmine, Ran Zalk, Varda Shoshan-Barmaz\",\"doi\":\"10.1007/s10495-025-02185-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mitochondrial voltage-dependent anion channel-1 (VDAC1) protein plays a central role in regulating mitochondrial metabolism, energy production, and apoptosis. VDAC1 interacts with over 100 proteins across the cytosol, endoplasmic reticulum, plasma membrane, and mitochondrial membranes. These interactions coordinate metabolism, cell death, and signal transduction, integrating mitochondrial and cellular functions. To identify VDAC1 binding sites, we designed a peptide array of 768 peptides from 19 selected VDAC1-interacting proteins. We focused on three partners: GAPDH, gelsolin, and actin. Their VDAC1-binding sequences as peptides interacted with purified VDAC1 and, as cell-penetrating peptides, induced cell death, and elevated intracellular Ca<sup>2</sup>⁺ and ROS levels. Despite sequence diversity, the peptides converged on enhancing transcription factors p53 and c-Jun, upregulating VDAC1, promoting its oligomerization, and triggering apoptosis. Other effects related to their originated protein's function include no significant effect of the GAPDH-derived peptide on its catalytic activity, indicating its effects are independent of glycolysis. The gelsolin-derived peptide altered actin organization, increasing filopodia and focal adhesion, and actin-derived peptides reduced actin, gelsolin, and tubulin expression. This study is the first to identify VDAC1 binding sites on 19 interacting partners and to demonstrate their use as cell-penetrating peptides to modulate the VDAC1 network. These findings highlight VDAC1's multifaceted regulatory role and offer a novel approach for targeting VDAC1-protein interactions for therapeutic purposes.</p>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10495-025-02185-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-025-02185-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
VDAC1-interacting proteins: binding site mapping and their derived peptides induce apoptosis and multifaceted cellular effects.
The mitochondrial voltage-dependent anion channel-1 (VDAC1) protein plays a central role in regulating mitochondrial metabolism, energy production, and apoptosis. VDAC1 interacts with over 100 proteins across the cytosol, endoplasmic reticulum, plasma membrane, and mitochondrial membranes. These interactions coordinate metabolism, cell death, and signal transduction, integrating mitochondrial and cellular functions. To identify VDAC1 binding sites, we designed a peptide array of 768 peptides from 19 selected VDAC1-interacting proteins. We focused on three partners: GAPDH, gelsolin, and actin. Their VDAC1-binding sequences as peptides interacted with purified VDAC1 and, as cell-penetrating peptides, induced cell death, and elevated intracellular Ca2⁺ and ROS levels. Despite sequence diversity, the peptides converged on enhancing transcription factors p53 and c-Jun, upregulating VDAC1, promoting its oligomerization, and triggering apoptosis. Other effects related to their originated protein's function include no significant effect of the GAPDH-derived peptide on its catalytic activity, indicating its effects are independent of glycolysis. The gelsolin-derived peptide altered actin organization, increasing filopodia and focal adhesion, and actin-derived peptides reduced actin, gelsolin, and tubulin expression. This study is the first to identify VDAC1 binding sites on 19 interacting partners and to demonstrate their use as cell-penetrating peptides to modulate the VDAC1 network. These findings highlight VDAC1's multifaceted regulatory role and offer a novel approach for targeting VDAC1-protein interactions for therapeutic purposes.
期刊介绍:
Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.