{"title":"用于评估动静脉瘘的光容积脉搏波仪验证的实验设置。","authors":"Simone Chiorboli, Adriano Brugnoli, Vincenzo Piemonte","doi":"10.3390/bioengineering12090990","DOIUrl":null,"url":null,"abstract":"<p><p>This study describes the design and validation of an experimental setup for testing photoplethysmographic (PPG) devices intended for the non-invasive monitoring of vascular accesses in hemodialysis patients. Continuous assessment of arteriovenous fistulas is essential to detect pathological conditions such as stenosis, which can compromise patient safety and dialysis efficacy. While PPG-based sensors are capable of detecting such anomalies, their clinical applicability must be supported by controlled in vitro validation. The developed system replicates the anatomical, mechanical, optical, and hemodynamic features of vascular accesses. A 3D fistula model was designed and fabricated via 3D printing and silicone casting. The hydraulic circuit used red India ink and a PWM-controlled pump to simulate physiological blood flow, including stenotic conditions. Quantitative validation confirmed anatomical accuracy within 0.1 mm tolerance. The phantom exhibited an average Shore A hardness of 20.3 ± 1.1, a Young's modulus of 10.4 ± 0.9 MPa, and a compression modulus of 105 MPa-values consistent with soft tissue behavior. Burst pressure exceeded 2000 mmHg, meeting ISO 7198:2016 standards. Flow rates (400-700 mL/min) showed <1% error. Compliance was 2.4 ± 0.2, and simulated blood viscosity was 3.9 ± 0.3 mPa·s. Systolic and diastolic pressures fell within physiological ranges. Photoplethysmographic signals acquired using a MAX30102 sensor (Analog devices Inc., Wilmington, MA, USA) reproduced key components of in vivo waveforms, confirming the system's suitability for device testing.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467338/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experimental Setup for the Validation of Photoplethysmography Devices for the Evaluation of Arteriovenous Fistulas.\",\"authors\":\"Simone Chiorboli, Adriano Brugnoli, Vincenzo Piemonte\",\"doi\":\"10.3390/bioengineering12090990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study describes the design and validation of an experimental setup for testing photoplethysmographic (PPG) devices intended for the non-invasive monitoring of vascular accesses in hemodialysis patients. Continuous assessment of arteriovenous fistulas is essential to detect pathological conditions such as stenosis, which can compromise patient safety and dialysis efficacy. While PPG-based sensors are capable of detecting such anomalies, their clinical applicability must be supported by controlled in vitro validation. The developed system replicates the anatomical, mechanical, optical, and hemodynamic features of vascular accesses. A 3D fistula model was designed and fabricated via 3D printing and silicone casting. The hydraulic circuit used red India ink and a PWM-controlled pump to simulate physiological blood flow, including stenotic conditions. Quantitative validation confirmed anatomical accuracy within 0.1 mm tolerance. The phantom exhibited an average Shore A hardness of 20.3 ± 1.1, a Young's modulus of 10.4 ± 0.9 MPa, and a compression modulus of 105 MPa-values consistent with soft tissue behavior. Burst pressure exceeded 2000 mmHg, meeting ISO 7198:2016 standards. Flow rates (400-700 mL/min) showed <1% error. Compliance was 2.4 ± 0.2, and simulated blood viscosity was 3.9 ± 0.3 mPa·s. Systolic and diastolic pressures fell within physiological ranges. Photoplethysmographic signals acquired using a MAX30102 sensor (Analog devices Inc., Wilmington, MA, USA) reproduced key components of in vivo waveforms, confirming the system's suitability for device testing.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12090990\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090990","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Experimental Setup for the Validation of Photoplethysmography Devices for the Evaluation of Arteriovenous Fistulas.
This study describes the design and validation of an experimental setup for testing photoplethysmographic (PPG) devices intended for the non-invasive monitoring of vascular accesses in hemodialysis patients. Continuous assessment of arteriovenous fistulas is essential to detect pathological conditions such as stenosis, which can compromise patient safety and dialysis efficacy. While PPG-based sensors are capable of detecting such anomalies, their clinical applicability must be supported by controlled in vitro validation. The developed system replicates the anatomical, mechanical, optical, and hemodynamic features of vascular accesses. A 3D fistula model was designed and fabricated via 3D printing and silicone casting. The hydraulic circuit used red India ink and a PWM-controlled pump to simulate physiological blood flow, including stenotic conditions. Quantitative validation confirmed anatomical accuracy within 0.1 mm tolerance. The phantom exhibited an average Shore A hardness of 20.3 ± 1.1, a Young's modulus of 10.4 ± 0.9 MPa, and a compression modulus of 105 MPa-values consistent with soft tissue behavior. Burst pressure exceeded 2000 mmHg, meeting ISO 7198:2016 standards. Flow rates (400-700 mL/min) showed <1% error. Compliance was 2.4 ± 0.2, and simulated blood viscosity was 3.9 ± 0.3 mPa·s. Systolic and diastolic pressures fell within physiological ranges. Photoplethysmographic signals acquired using a MAX30102 sensor (Analog devices Inc., Wilmington, MA, USA) reproduced key components of in vivo waveforms, confirming the system's suitability for device testing.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering