Yanfei Mo, Desheng Wang, Zhenkun Deng, Pingping Zhao, Zhen Gou, Xiaoyun Sun, Yunrui Zhang, Yang Bai
{"title":"肺动脉高压患者内皮细胞SPRY1缺乏与血管生成代谢重编程相关:一项对大细胞和单细胞转录组谱的多组学分析","authors":"Yanfei Mo, Desheng Wang, Zhenkun Deng, Pingping Zhao, Zhen Gou, Xiaoyun Sun, Yunrui Zhang, Yang Bai","doi":"10.1007/s10495-025-02175-0","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanism underlying vascular remodeling in pulmonary arterial hypertension (PAH) involves complex interactions among various cell types, with dysregulation of endothelial cells (ECs) homeostasis considered a crucial pathological factor. However, their local cellular changes still need to be fully identified during PAH. This study utilized single-cell RNA sequencing data from the GEO database to analyze lung tissue samples from PAH patients and normal controls, revealing significant heterogeneity in lung ECs and dysregulated metabolic pathways. We identified a significant expansion of capillary ECs in PAH patients, linked to dysregulated angiogenesis and glycolysis-tricarboxylic acid cycle metabolic pathways. Through integrative high-dimensional weighted gene co-expression network analysis (hdWGCNA) and machine learning, we identified SPRY1 as a novel key biomarker in PAH pathogenesis and validated its significant downregulation in a monocrotaline-induced PAH rat model. These findings establish capillary ECs expansion and SPRY1 deficiency as pivotal drivers in PAH pathogenesis, providing a foundation for precise therapeutic targeting.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endothelial SPRY1 deficiency associates with angiogenic-metabolic reprogramming in pulmonary arterial hypertension: a multi-omics analysis of bulk and single-cell transcriptomic profiles.\",\"authors\":\"Yanfei Mo, Desheng Wang, Zhenkun Deng, Pingping Zhao, Zhen Gou, Xiaoyun Sun, Yunrui Zhang, Yang Bai\",\"doi\":\"10.1007/s10495-025-02175-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mechanism underlying vascular remodeling in pulmonary arterial hypertension (PAH) involves complex interactions among various cell types, with dysregulation of endothelial cells (ECs) homeostasis considered a crucial pathological factor. However, their local cellular changes still need to be fully identified during PAH. This study utilized single-cell RNA sequencing data from the GEO database to analyze lung tissue samples from PAH patients and normal controls, revealing significant heterogeneity in lung ECs and dysregulated metabolic pathways. We identified a significant expansion of capillary ECs in PAH patients, linked to dysregulated angiogenesis and glycolysis-tricarboxylic acid cycle metabolic pathways. Through integrative high-dimensional weighted gene co-expression network analysis (hdWGCNA) and machine learning, we identified SPRY1 as a novel key biomarker in PAH pathogenesis and validated its significant downregulation in a monocrotaline-induced PAH rat model. These findings establish capillary ECs expansion and SPRY1 deficiency as pivotal drivers in PAH pathogenesis, providing a foundation for precise therapeutic targeting.</p>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10495-025-02175-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-025-02175-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Endothelial SPRY1 deficiency associates with angiogenic-metabolic reprogramming in pulmonary arterial hypertension: a multi-omics analysis of bulk and single-cell transcriptomic profiles.
The mechanism underlying vascular remodeling in pulmonary arterial hypertension (PAH) involves complex interactions among various cell types, with dysregulation of endothelial cells (ECs) homeostasis considered a crucial pathological factor. However, their local cellular changes still need to be fully identified during PAH. This study utilized single-cell RNA sequencing data from the GEO database to analyze lung tissue samples from PAH patients and normal controls, revealing significant heterogeneity in lung ECs and dysregulated metabolic pathways. We identified a significant expansion of capillary ECs in PAH patients, linked to dysregulated angiogenesis and glycolysis-tricarboxylic acid cycle metabolic pathways. Through integrative high-dimensional weighted gene co-expression network analysis (hdWGCNA) and machine learning, we identified SPRY1 as a novel key biomarker in PAH pathogenesis and validated its significant downregulation in a monocrotaline-induced PAH rat model. These findings establish capillary ECs expansion and SPRY1 deficiency as pivotal drivers in PAH pathogenesis, providing a foundation for precise therapeutic targeting.
期刊介绍:
Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.