Rana Gunoz Comert, Gorkem Durak, Ravza Yilmaz, Halil Ertugrul Aktas, Zeynep Tuz, Hongyi Pan, Jun Zeng, Aysel Bayram, Baran Mollavelioglu, Sukru Mehmet Erturk, Ulas Bagci
{"title":"放射组学检测三阴性乳腺癌化生组织学:迈向个体化治疗的一步。","authors":"Rana Gunoz Comert, Gorkem Durak, Ravza Yilmaz, Halil Ertugrul Aktas, Zeynep Tuz, Hongyi Pan, Jun Zeng, Aysel Bayram, Baran Mollavelioglu, Sukru Mehmet Erturk, Ulas Bagci","doi":"10.3390/bioengineering12090973","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop and validate a multisequence MRI-based radiomics approach for distinguishing metaplastic breast cancer (MBC) from non-metaplastic triple-negative breast cancer (TNBC) at the initial diagnosis, which could facilitate optimal treatment selection. In this retrospective study, we analyzed 105 patients (27 MBC, 78 non-metaplastic TNBC) who underwent standardized breast magnetic resonance imaging (MRI), which included T1-weighted contrast-enhanced (T1W-CE) and short-tau inversion recovery (STIR) sequences. Two radiologists performed ground truth lesion segmentation, verified by a senior radiologist. We extracted 214 radiomic features (using PyRadiomics) and used least absolute shrinkage and selection operator (LASSO) regression for feature selection. Seven machine learning classifiers were thoroughly evaluated using five-fold cross-validation, with performance assessed through ROC analysis and accuracy metrics. The combined T1W-CE and STIR analysis demonstrated superior diagnostic performance for distinguishing MBC from non-metaplastic TNBC (AUC = 0.845; accuracy = 81%) compared with either sequence alone (T1W only AUC = 0.805; accuracy = 80%; STIR only AUC:0.768; accuracy = 77%). Multisequence MRI radiomics can reliably distinguish between MBC and TNBC at the time of initial diagnosis. This could potentially facilitate the selection of more appropriate treatments and help avoid ineffective chemotherapy for MBC patients.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467954/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiomics for Detecting Metaplastic Histology in Triple-Negative Breast Cancer: A Step Towards Personalized Therapy.\",\"authors\":\"Rana Gunoz Comert, Gorkem Durak, Ravza Yilmaz, Halil Ertugrul Aktas, Zeynep Tuz, Hongyi Pan, Jun Zeng, Aysel Bayram, Baran Mollavelioglu, Sukru Mehmet Erturk, Ulas Bagci\",\"doi\":\"10.3390/bioengineering12090973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to develop and validate a multisequence MRI-based radiomics approach for distinguishing metaplastic breast cancer (MBC) from non-metaplastic triple-negative breast cancer (TNBC) at the initial diagnosis, which could facilitate optimal treatment selection. In this retrospective study, we analyzed 105 patients (27 MBC, 78 non-metaplastic TNBC) who underwent standardized breast magnetic resonance imaging (MRI), which included T1-weighted contrast-enhanced (T1W-CE) and short-tau inversion recovery (STIR) sequences. Two radiologists performed ground truth lesion segmentation, verified by a senior radiologist. We extracted 214 radiomic features (using PyRadiomics) and used least absolute shrinkage and selection operator (LASSO) regression for feature selection. Seven machine learning classifiers were thoroughly evaluated using five-fold cross-validation, with performance assessed through ROC analysis and accuracy metrics. The combined T1W-CE and STIR analysis demonstrated superior diagnostic performance for distinguishing MBC from non-metaplastic TNBC (AUC = 0.845; accuracy = 81%) compared with either sequence alone (T1W only AUC = 0.805; accuracy = 80%; STIR only AUC:0.768; accuracy = 77%). Multisequence MRI radiomics can reliably distinguish between MBC and TNBC at the time of initial diagnosis. This could potentially facilitate the selection of more appropriate treatments and help avoid ineffective chemotherapy for MBC patients.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467954/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12090973\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090973","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Radiomics for Detecting Metaplastic Histology in Triple-Negative Breast Cancer: A Step Towards Personalized Therapy.
This study aims to develop and validate a multisequence MRI-based radiomics approach for distinguishing metaplastic breast cancer (MBC) from non-metaplastic triple-negative breast cancer (TNBC) at the initial diagnosis, which could facilitate optimal treatment selection. In this retrospective study, we analyzed 105 patients (27 MBC, 78 non-metaplastic TNBC) who underwent standardized breast magnetic resonance imaging (MRI), which included T1-weighted contrast-enhanced (T1W-CE) and short-tau inversion recovery (STIR) sequences. Two radiologists performed ground truth lesion segmentation, verified by a senior radiologist. We extracted 214 radiomic features (using PyRadiomics) and used least absolute shrinkage and selection operator (LASSO) regression for feature selection. Seven machine learning classifiers were thoroughly evaluated using five-fold cross-validation, with performance assessed through ROC analysis and accuracy metrics. The combined T1W-CE and STIR analysis demonstrated superior diagnostic performance for distinguishing MBC from non-metaplastic TNBC (AUC = 0.845; accuracy = 81%) compared with either sequence alone (T1W only AUC = 0.805; accuracy = 80%; STIR only AUC:0.768; accuracy = 77%). Multisequence MRI radiomics can reliably distinguish between MBC and TNBC at the time of initial diagnosis. This could potentially facilitate the selection of more appropriate treatments and help avoid ineffective chemotherapy for MBC patients.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering