用于诱导和监测疾病的功能性3D结肠模型的开发。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jorge Alfonso Tavares-Negrete, Sahar Najafikoshnoo, Anita Ghandehari, Mozhgan Keshavarz, Quinton Smith, Armand Ahmetaj, Steven Zanganeh, Rahim Esfandyarpour
{"title":"用于诱导和监测疾病的功能性3D结肠模型的开发。","authors":"Jorge Alfonso Tavares-Negrete, Sahar Najafikoshnoo, Anita Ghandehari, Mozhgan Keshavarz, Quinton Smith, Armand Ahmetaj, Steven Zanganeh, Rahim Esfandyarpour","doi":"10.1002/advs.202506377","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional in vitro and animal models do not reproduce the geometry, mechanics, or transport physics of the human colon, limiting their fidelity for disease studies and drug screening. A patient-derived, freeform reversible embedding of suspended hydrogels bioprinted three-dimensional (3D) in vivo mimicking human-colon model (3D-IVM-HC) is reported whose micro-computed tomography (CT) profile deviates by less than 4% from the original computed tomography template and spontaneously forms crypt-like invaginations with a median depth of 65 µm. The dual-layer gelatin methacrylate (GelMA)/alginate matrix matches native colonic stiffness (9-65 kPa) and sustains >95% cell viability with a 14-fold metabolic increase over 14 days. Caco-2 epithelia polarize within the lumen, form continuous Zonula occludens-1 (ZO-1) belts, and reach a transepithelial electrical resistance (TEER) of 68 ± 4 Ω cm<sup>2</sup>, values within the human ex vivo range. Finite-element simulations (FEM) parameterized with measured geometry and resistance predict water and nutrient fluxes within 80-99% of human explants. When HCT116 tumor spheroids are introduced, the construct yields a 5-fluorouracil (5-FU) half-maximal inhibitory concentration (IC<sub>5</sub>₀) of 540 ± 30 µm, an order of magnitude higher than a matched two-dimensional (2D) monolayer (42 ± 5 µm), mirroring clinical chemoresistance. Together, these benchmarks establish the 3D-IVM-HC as a physiologically faithful, animal-free platform for probing colorectal biology and quantifying drug response.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e06377"},"PeriodicalIF":14.1000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Functional 3D Colon Model for the Induction and Monitoring of Diseases.\",\"authors\":\"Jorge Alfonso Tavares-Negrete, Sahar Najafikoshnoo, Anita Ghandehari, Mozhgan Keshavarz, Quinton Smith, Armand Ahmetaj, Steven Zanganeh, Rahim Esfandyarpour\",\"doi\":\"10.1002/advs.202506377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional in vitro and animal models do not reproduce the geometry, mechanics, or transport physics of the human colon, limiting their fidelity for disease studies and drug screening. A patient-derived, freeform reversible embedding of suspended hydrogels bioprinted three-dimensional (3D) in vivo mimicking human-colon model (3D-IVM-HC) is reported whose micro-computed tomography (CT) profile deviates by less than 4% from the original computed tomography template and spontaneously forms crypt-like invaginations with a median depth of 65 µm. The dual-layer gelatin methacrylate (GelMA)/alginate matrix matches native colonic stiffness (9-65 kPa) and sustains >95% cell viability with a 14-fold metabolic increase over 14 days. Caco-2 epithelia polarize within the lumen, form continuous Zonula occludens-1 (ZO-1) belts, and reach a transepithelial electrical resistance (TEER) of 68 ± 4 Ω cm<sup>2</sup>, values within the human ex vivo range. Finite-element simulations (FEM) parameterized with measured geometry and resistance predict water and nutrient fluxes within 80-99% of human explants. When HCT116 tumor spheroids are introduced, the construct yields a 5-fluorouracil (5-FU) half-maximal inhibitory concentration (IC<sub>5</sub>₀) of 540 ± 30 µm, an order of magnitude higher than a matched two-dimensional (2D) monolayer (42 ± 5 µm), mirroring clinical chemoresistance. Together, these benchmarks establish the 3D-IVM-HC as a physiologically faithful, animal-free platform for probing colorectal biology and quantifying drug response.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e06377\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202506377\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202506377","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的体外和动物模型不能再现人类结肠的几何、力学或运输物理,限制了它们在疾病研究和药物筛选中的保真度。据报道,一种由患者衍生的、自由形式可逆的悬浮水凝胶生物打印三维(3D)体内模拟人类结肠模型(3D- ivm - hc)的嵌入,其微计算机断层扫描(CT)轮廓与原始计算机断层扫描模板偏差小于4%,并自发形成隐窝样内陷,中位深度为65µm。双层凝胶甲基丙烯酸酯(GelMA)/海藻酸盐基质与天然结肠硬度(9-65 kPa)相匹配,在14天内代谢增加14倍,细胞活力维持在95%以上。cco -2上皮在管腔内极化,形成连续的ZO-1闭塞带,并达到68±4 Ω cm2的经上皮电阻(TEER),该值在人离体范围内。用测量的几何形状和阻力参数化的有限元模拟(FEM)可以预测80-99%人体外植体内的水和养分通量。当引入HCT116肿瘤球体时,该结构产生5-氟尿嘧啶(5- fu)半最大抑制浓度(IC5 0)为540±30µm,比匹配的二维(2D)单层(42±5µm)高一个数量级,反映了临床化疗耐药。总之,这些基准将3D-IVM-HC建立为一个生理上忠实的、无动物的平台,用于探测结直肠生物学和定量药物反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Functional 3D Colon Model for the Induction and Monitoring of Diseases.

Conventional in vitro and animal models do not reproduce the geometry, mechanics, or transport physics of the human colon, limiting their fidelity for disease studies and drug screening. A patient-derived, freeform reversible embedding of suspended hydrogels bioprinted three-dimensional (3D) in vivo mimicking human-colon model (3D-IVM-HC) is reported whose micro-computed tomography (CT) profile deviates by less than 4% from the original computed tomography template and spontaneously forms crypt-like invaginations with a median depth of 65 µm. The dual-layer gelatin methacrylate (GelMA)/alginate matrix matches native colonic stiffness (9-65 kPa) and sustains >95% cell viability with a 14-fold metabolic increase over 14 days. Caco-2 epithelia polarize within the lumen, form continuous Zonula occludens-1 (ZO-1) belts, and reach a transepithelial electrical resistance (TEER) of 68 ± 4 Ω cm2, values within the human ex vivo range. Finite-element simulations (FEM) parameterized with measured geometry and resistance predict water and nutrient fluxes within 80-99% of human explants. When HCT116 tumor spheroids are introduced, the construct yields a 5-fluorouracil (5-FU) half-maximal inhibitory concentration (IC5₀) of 540 ± 30 µm, an order of magnitude higher than a matched two-dimensional (2D) monolayer (42 ± 5 µm), mirroring clinical chemoresistance. Together, these benchmarks establish the 3D-IVM-HC as a physiologically faithful, animal-free platform for probing colorectal biology and quantifying drug response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信