相位空间电子结构框架内精确振动能量的恢复。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Xinchun Wu, , , Xuezhi Bian, , , Jonathan Rawlinson, , , Robert G. Littlejohn, , and , Joseph E. Subotnik*, 
{"title":"相位空间电子结构框架内精确振动能量的恢复。","authors":"Xinchun Wu,&nbsp;, ,&nbsp;Xuezhi Bian,&nbsp;, ,&nbsp;Jonathan Rawlinson,&nbsp;, ,&nbsp;Robert G. Littlejohn,&nbsp;, and ,&nbsp;Joseph E. Subotnik*,&nbsp;","doi":"10.1021/acs.jctc.5c00956","DOIUrl":null,"url":null,"abstract":"<p >In recent years, there has been a push to go beyond the Born–Oppenheimer theory and build electronic states from a phase space perspective, i.e., parametrize electronic states by both nuclear position (<b><i>R</i></b>) and nuclear momentum (<b><i>P</i></b>). Previous empirical studies have demonstrated that such approaches can yield improved single-surface observables, including vibrational energies, electronic momenta, and vibrational circular dichroism spectra. That being said, unlike the case of the BO theory, there is no unique phase space electronic Hamiltonian nor any theory for using phase space eigenvectors (as opposed to BO eigenvectors) to recover exact quantum vibrational eigenvalues. As such, one might consider such phase space approaches <i>ad hoc</i>. To that end, here we show how to formally extract exact quantum energies from a coupled nuclear-electronic Hamiltonian using perturbation theory on top of a phase space electronic framework. Thus, while we cannot isolate an “optimal” phase space electronic Hamiltonian, this work does justify a phase space electronic structure approach by offering a rigorous framework for correcting the zeroth-order phase space electronic states.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 19","pages":"9470–9482"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovering Exact Vibrational Energies within a Phase Space Electronic Structure Framework\",\"authors\":\"Xinchun Wu,&nbsp;, ,&nbsp;Xuezhi Bian,&nbsp;, ,&nbsp;Jonathan Rawlinson,&nbsp;, ,&nbsp;Robert G. Littlejohn,&nbsp;, and ,&nbsp;Joseph E. Subotnik*,&nbsp;\",\"doi\":\"10.1021/acs.jctc.5c00956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent years, there has been a push to go beyond the Born–Oppenheimer theory and build electronic states from a phase space perspective, i.e., parametrize electronic states by both nuclear position (<b><i>R</i></b>) and nuclear momentum (<b><i>P</i></b>). Previous empirical studies have demonstrated that such approaches can yield improved single-surface observables, including vibrational energies, electronic momenta, and vibrational circular dichroism spectra. That being said, unlike the case of the BO theory, there is no unique phase space electronic Hamiltonian nor any theory for using phase space eigenvectors (as opposed to BO eigenvectors) to recover exact quantum vibrational eigenvalues. As such, one might consider such phase space approaches <i>ad hoc</i>. To that end, here we show how to formally extract exact quantum energies from a coupled nuclear-electronic Hamiltonian using perturbation theory on top of a phase space electronic framework. Thus, while we cannot isolate an “optimal” phase space electronic Hamiltonian, this work does justify a phase space electronic structure approach by offering a rigorous framework for correcting the zeroth-order phase space electronic states.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"21 19\",\"pages\":\"9470–9482\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00956\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00956","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,有一种超越Born-Oppenheimer理论的趋势,从相空间的角度构建电子态,即通过核位置(R)和核动量(P)来参数化电子态。先前的经验研究表明,这种方法可以产生更好的单表面观测值,包括振动能量、电子动量和振动圆二色光谱。也就是说,与BO理论的情况不同,没有唯一的相空间电子哈密顿量,也没有任何理论可以使用相空间特征向量(与BO特征向量相反)来恢复精确的量子振动特征值。因此,人们可以特别考虑这种相空间方法。为此,我们展示了如何在相空间电子框架上使用微扰理论从耦合核电子哈密顿量中正式提取精确的量子能量。因此,虽然我们不能分离出一个“最优”的相空间电子哈密顿量,但这项工作通过提供一个严格的框架来纠正零阶相空间电子状态,确实证明了相空间电子结构方法的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recovering Exact Vibrational Energies within a Phase Space Electronic Structure Framework

Recovering Exact Vibrational Energies within a Phase Space Electronic Structure Framework

Recovering Exact Vibrational Energies within a Phase Space Electronic Structure Framework

In recent years, there has been a push to go beyond the Born–Oppenheimer theory and build electronic states from a phase space perspective, i.e., parametrize electronic states by both nuclear position (R) and nuclear momentum (P). Previous empirical studies have demonstrated that such approaches can yield improved single-surface observables, including vibrational energies, electronic momenta, and vibrational circular dichroism spectra. That being said, unlike the case of the BO theory, there is no unique phase space electronic Hamiltonian nor any theory for using phase space eigenvectors (as opposed to BO eigenvectors) to recover exact quantum vibrational eigenvalues. As such, one might consider such phase space approaches ad hoc. To that end, here we show how to formally extract exact quantum energies from a coupled nuclear-electronic Hamiltonian using perturbation theory on top of a phase space electronic framework. Thus, while we cannot isolate an “optimal” phase space electronic Hamiltonian, this work does justify a phase space electronic structure approach by offering a rigorous framework for correcting the zeroth-order phase space electronic states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信