{"title":"河流分岔的时间尺度","authors":"Gabriele Barile, Marco Redolfi, Marco Tubino","doi":"10.1002/esp.70159","DOIUrl":null,"url":null,"abstract":"<p>River bifurcations are the fundamental building blocks of a variety of fluvial environments such as braiding and anastomosed rivers, alluvial fans, and river deltas. Their long-term equilibrium configurations have been widely explored, together with the influence of several external forcing factors, whereas less attention has been devoted to investigate the characteristic timescale with which bifurcations evolve over time. In this work, we address this issue by combining the results of a 1-D numerical model with those obtained through a linear stability analysis that accounts for the length of bifurcates. Numerical results show that the timescale of the adaptation of water and sediment partition at the bifurcation node is much shorter than the time required to achieve the long-term equilibrium of the bifurcates. We find that the nodal point evolution becomes faster as the value of the width-to-depth ratio increases above the critical threshold for the bifurcation stability, while it gets slower as the length of the bifurcates increases. The timescale becomes independent of the branch length when this length exceeds a threshold value above which the effect of the downstream boundary condition no longer affects the evolution of the bifurcation node. The analysis of a large dataset of gravel-bed bifurcations reveals that the evolutionary timescale of most of them is larger than that of natural flow variations. Moreover, the rate at which the water and sediment partitioning at bifurcations changes over time is generally smaller than the fluctuation rate of sediment transport caused by the migration of bars in the upstream channel, especially for bifurcations with long branches.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.70159","citationCount":"0","resultStr":"{\"title\":\"Time scales of river bifurcations\",\"authors\":\"Gabriele Barile, Marco Redolfi, Marco Tubino\",\"doi\":\"10.1002/esp.70159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>River bifurcations are the fundamental building blocks of a variety of fluvial environments such as braiding and anastomosed rivers, alluvial fans, and river deltas. Their long-term equilibrium configurations have been widely explored, together with the influence of several external forcing factors, whereas less attention has been devoted to investigate the characteristic timescale with which bifurcations evolve over time. In this work, we address this issue by combining the results of a 1-D numerical model with those obtained through a linear stability analysis that accounts for the length of bifurcates. Numerical results show that the timescale of the adaptation of water and sediment partition at the bifurcation node is much shorter than the time required to achieve the long-term equilibrium of the bifurcates. We find that the nodal point evolution becomes faster as the value of the width-to-depth ratio increases above the critical threshold for the bifurcation stability, while it gets slower as the length of the bifurcates increases. The timescale becomes independent of the branch length when this length exceeds a threshold value above which the effect of the downstream boundary condition no longer affects the evolution of the bifurcation node. The analysis of a large dataset of gravel-bed bifurcations reveals that the evolutionary timescale of most of them is larger than that of natural flow variations. Moreover, the rate at which the water and sediment partitioning at bifurcations changes over time is generally smaller than the fluctuation rate of sediment transport caused by the migration of bars in the upstream channel, especially for bifurcations with long branches.</p>\",\"PeriodicalId\":11408,\"journal\":{\"name\":\"Earth Surface Processes and Landforms\",\"volume\":\"50 12\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.70159\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Surface Processes and Landforms\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/esp.70159\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.70159","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
River bifurcations are the fundamental building blocks of a variety of fluvial environments such as braiding and anastomosed rivers, alluvial fans, and river deltas. Their long-term equilibrium configurations have been widely explored, together with the influence of several external forcing factors, whereas less attention has been devoted to investigate the characteristic timescale with which bifurcations evolve over time. In this work, we address this issue by combining the results of a 1-D numerical model with those obtained through a linear stability analysis that accounts for the length of bifurcates. Numerical results show that the timescale of the adaptation of water and sediment partition at the bifurcation node is much shorter than the time required to achieve the long-term equilibrium of the bifurcates. We find that the nodal point evolution becomes faster as the value of the width-to-depth ratio increases above the critical threshold for the bifurcation stability, while it gets slower as the length of the bifurcates increases. The timescale becomes independent of the branch length when this length exceeds a threshold value above which the effect of the downstream boundary condition no longer affects the evolution of the bifurcation node. The analysis of a large dataset of gravel-bed bifurcations reveals that the evolutionary timescale of most of them is larger than that of natural flow variations. Moreover, the rate at which the water and sediment partitioning at bifurcations changes over time is generally smaller than the fluctuation rate of sediment transport caused by the migration of bars in the upstream channel, especially for bifurcations with long branches.
期刊介绍:
Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with:
the interactions between surface processes and landforms and landscapes;
that lead to physical, chemical and biological changes; and which in turn create;
current landscapes and the geological record of past landscapes.
Its focus is core to both physical geographical and geological communities, and also the wider geosciences