蛋白质-蛋白质复合物稳定性控制中链β-酮酰基- acp还原酶的底物范围

Samuel J. Andrzejewski, Anika J. Friedman, Kathryn Mains, Annette Thompson, Nathaniel L. Hamel, Banumathi Sankaran, Peter H. Zwart, Michael R. Shirts, Jerome M. Fox
{"title":"蛋白质-蛋白质复合物稳定性控制中链β-酮酰基- acp还原酶的底物范围","authors":"Samuel J. Andrzejewski,&nbsp;Anika J. Friedman,&nbsp;Kathryn Mains,&nbsp;Annette Thompson,&nbsp;Nathaniel L. Hamel,&nbsp;Banumathi Sankaran,&nbsp;Peter H. Zwart,&nbsp;Michael R. Shirts,&nbsp;Jerome M. Fox","doi":"10.1002/ange.202508316","DOIUrl":null,"url":null,"abstract":"<p>Assembly-line enzymes carry out multistep synthesis of important metabolites by using acyl carrier proteins (ACPs) to shuttle intermediates along defined sequences of active sites. Despite longstanding interest in reprogramming these systems for metabolic engineering and biosynthetic chemistry, the mechanisms underlying their reaction order remain poorly understood and difficult to control. Here we describe a β-ketoacyl-ACP reductase from <i>Pseudomonas putida</i> (<i>Pp</i>FabG4) with an unusual selectivity for medium chains and use it to explore the molecular basis of substrate specificity in enzymes that pull intermediates from fatty acid synthesis, a common route to specialized products. X-ray crystallography shows no obvious barriers to short-chain binding. Molecular simulations and supporting mutational analyses indicate that substrate preference arises instead from a weak enzyme–ACP interaction that is stabilized by medium acyl chains but not by short chains. Indeed, mutations that strengthen this interaction for <i>Pp</i>FabG4 or weaken it for <i>Ec</i>FabG, an <i>Escherichia coli</i> β-ketoacyl-ACP reductase with a broad substrate specificity, can enhance or reduce activity on short-chain substrates by over 100-fold. Our findings show how the stability of enzyme-ACP interactions can control substrate scope in promiscuous enzymes and guide the exchange of intermediates between (and within) assembly-line systems.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein–Protein Complex Stability Controls Substrate Scope in a β-Ketoacyl-ACP Reductase Specific for Medium Chains\",\"authors\":\"Samuel J. Andrzejewski,&nbsp;Anika J. Friedman,&nbsp;Kathryn Mains,&nbsp;Annette Thompson,&nbsp;Nathaniel L. Hamel,&nbsp;Banumathi Sankaran,&nbsp;Peter H. Zwart,&nbsp;Michael R. Shirts,&nbsp;Jerome M. Fox\",\"doi\":\"10.1002/ange.202508316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Assembly-line enzymes carry out multistep synthesis of important metabolites by using acyl carrier proteins (ACPs) to shuttle intermediates along defined sequences of active sites. Despite longstanding interest in reprogramming these systems for metabolic engineering and biosynthetic chemistry, the mechanisms underlying their reaction order remain poorly understood and difficult to control. Here we describe a β-ketoacyl-ACP reductase from <i>Pseudomonas putida</i> (<i>Pp</i>FabG4) with an unusual selectivity for medium chains and use it to explore the molecular basis of substrate specificity in enzymes that pull intermediates from fatty acid synthesis, a common route to specialized products. X-ray crystallography shows no obvious barriers to short-chain binding. Molecular simulations and supporting mutational analyses indicate that substrate preference arises instead from a weak enzyme–ACP interaction that is stabilized by medium acyl chains but not by short chains. Indeed, mutations that strengthen this interaction for <i>Pp</i>FabG4 or weaken it for <i>Ec</i>FabG, an <i>Escherichia coli</i> β-ketoacyl-ACP reductase with a broad substrate specificity, can enhance or reduce activity on short-chain substrates by over 100-fold. Our findings show how the stability of enzyme-ACP interactions can control substrate scope in promiscuous enzymes and guide the exchange of intermediates between (and within) assembly-line systems.</p>\",\"PeriodicalId\":7803,\"journal\":{\"name\":\"Angewandte Chemie\",\"volume\":\"137 40\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ange.202508316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202508316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流水线酶通过使用酰基载体蛋白(ACPs)沿着特定的活性位点序列穿梭中间体来完成重要代谢物的多步合成。尽管长期以来人们一直对这些系统进行重编程以用于代谢工程和生物合成化学,但其反应顺序背后的机制仍然知之甚少且难以控制。在这里,我们描述了一种来自恶臭假单胞菌(PpFabG4)的β-酮酰基acp还原酶,它对中链具有不同寻常的选择性,并利用它来探索从脂肪酸合成中提取中间体的酶的底物特异性的分子基础,这是一种产生特殊产品的常见途径。x射线晶体学显示短链结合无明显障碍。分子模拟和支持的突变分析表明,底物偏好是由弱的酶- acp相互作用引起的,这种相互作用由中酰基链稳定,而不是由短链稳定。事实上,突变可以增强PpFabG4的这种相互作用或减弱EcFabG的这种相互作用,EcFabG是一种大肠杆菌β-酮酰基- acp还原酶,具有广泛的底物特异性,可以提高或降低短链底物的活性超过100倍。我们的研究结果表明,酶- acp相互作用的稳定性如何控制混杂酶的底物范围,并指导装配线系统之间(和内部)的中间体交换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Protein–Protein Complex Stability Controls Substrate Scope in a β-Ketoacyl-ACP Reductase Specific for Medium Chains

Protein–Protein Complex Stability Controls Substrate Scope in a β-Ketoacyl-ACP Reductase Specific for Medium Chains

Assembly-line enzymes carry out multistep synthesis of important metabolites by using acyl carrier proteins (ACPs) to shuttle intermediates along defined sequences of active sites. Despite longstanding interest in reprogramming these systems for metabolic engineering and biosynthetic chemistry, the mechanisms underlying their reaction order remain poorly understood and difficult to control. Here we describe a β-ketoacyl-ACP reductase from Pseudomonas putida (PpFabG4) with an unusual selectivity for medium chains and use it to explore the molecular basis of substrate specificity in enzymes that pull intermediates from fatty acid synthesis, a common route to specialized products. X-ray crystallography shows no obvious barriers to short-chain binding. Molecular simulations and supporting mutational analyses indicate that substrate preference arises instead from a weak enzyme–ACP interaction that is stabilized by medium acyl chains but not by short chains. Indeed, mutations that strengthen this interaction for PpFabG4 or weaken it for EcFabG, an Escherichia coli β-ketoacyl-ACP reductase with a broad substrate specificity, can enhance or reduce activity on short-chain substrates by over 100-fold. Our findings show how the stability of enzyme-ACP interactions can control substrate scope in promiscuous enzymes and guide the exchange of intermediates between (and within) assembly-line systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信