{"title":"研究过模热塑性复合材料的失效行为:实验测试和数值模拟","authors":"Anandakumar Paramasivam","doi":"10.1007/s10443-025-10346-0","DOIUrl":null,"url":null,"abstract":"<div><p>Over-molded composites are produced by injecting short fiber composites over continuous fiber-reinforced composite inserts through an injection molding process. These composites are suitable for load bearing structural applications because of their high specific strength, stiffness, lightweight nature, and the ability to form complex structures through simple manufacturing processes. However, their performance is highly dependent on the interface adhesion between the short and continuous fiber-reinforced composite inserts. This study investigates the effect of preheating on the load bearing capacity of over-molded composites under tensile and flexural loads using experimental and numerical approaches. The damage mechanism of the over-molded composites is characterized using Hashin and cohesive zone failure criteria within ABAQUS/Explicit to capture the failure mechanisms. The experimental results revealed that preheated over-molded composites demonstrated a significant increase in tensile and flexural properties compared to non-preheated composites. For the non-preheated specimens, the primary failure mechanisms were interfacial debonding, insert delamination, and short fiber composite failure. Conversely, in the preheated specimens, both short and continuous fibers experienced simultaneous damage, owing to the strong cohesive bond formed by preheating. The predicted numerical results align well with the experimental results in terms of load-displacement behavior, strength, and damage morphologies, suggesting that the numerical simulation is a valuable tool for assessing the performance of over-molded composites.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"32 4","pages":"1659 - 1687"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Failure Behavior of Over-molded Thermoplastic Composites: Experimental Testing and Numerical Modelling\",\"authors\":\"Anandakumar Paramasivam\",\"doi\":\"10.1007/s10443-025-10346-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over-molded composites are produced by injecting short fiber composites over continuous fiber-reinforced composite inserts through an injection molding process. These composites are suitable for load bearing structural applications because of their high specific strength, stiffness, lightweight nature, and the ability to form complex structures through simple manufacturing processes. However, their performance is highly dependent on the interface adhesion between the short and continuous fiber-reinforced composite inserts. This study investigates the effect of preheating on the load bearing capacity of over-molded composites under tensile and flexural loads using experimental and numerical approaches. The damage mechanism of the over-molded composites is characterized using Hashin and cohesive zone failure criteria within ABAQUS/Explicit to capture the failure mechanisms. The experimental results revealed that preheated over-molded composites demonstrated a significant increase in tensile and flexural properties compared to non-preheated composites. For the non-preheated specimens, the primary failure mechanisms were interfacial debonding, insert delamination, and short fiber composite failure. Conversely, in the preheated specimens, both short and continuous fibers experienced simultaneous damage, owing to the strong cohesive bond formed by preheating. The predicted numerical results align well with the experimental results in terms of load-displacement behavior, strength, and damage morphologies, suggesting that the numerical simulation is a valuable tool for assessing the performance of over-molded composites.</p></div>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"32 4\",\"pages\":\"1659 - 1687\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10443-025-10346-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-025-10346-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Investigating the Failure Behavior of Over-molded Thermoplastic Composites: Experimental Testing and Numerical Modelling
Over-molded composites are produced by injecting short fiber composites over continuous fiber-reinforced composite inserts through an injection molding process. These composites are suitable for load bearing structural applications because of their high specific strength, stiffness, lightweight nature, and the ability to form complex structures through simple manufacturing processes. However, their performance is highly dependent on the interface adhesion between the short and continuous fiber-reinforced composite inserts. This study investigates the effect of preheating on the load bearing capacity of over-molded composites under tensile and flexural loads using experimental and numerical approaches. The damage mechanism of the over-molded composites is characterized using Hashin and cohesive zone failure criteria within ABAQUS/Explicit to capture the failure mechanisms. The experimental results revealed that preheated over-molded composites demonstrated a significant increase in tensile and flexural properties compared to non-preheated composites. For the non-preheated specimens, the primary failure mechanisms were interfacial debonding, insert delamination, and short fiber composite failure. Conversely, in the preheated specimens, both short and continuous fibers experienced simultaneous damage, owing to the strong cohesive bond formed by preheating. The predicted numerical results align well with the experimental results in terms of load-displacement behavior, strength, and damage morphologies, suggesting that the numerical simulation is a valuable tool for assessing the performance of over-molded composites.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.