耗散欧拉流起源于圆涡细丝

IF 2.6 1区 数学 Q1 MATHEMATICS
Francisco Gancedo, Antonio Hidalgo-Torné, Francisco Mengual
{"title":"耗散欧拉流起源于圆涡细丝","authors":"Francisco Gancedo,&nbsp;Antonio Hidalgo-Torné,&nbsp;Francisco Mengual","doi":"10.1007/s40818-025-00211-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove the first existence result of weak solutions to the 3D Euler equation with initial vorticity concentrated in a circle and velocity field in <span>\\(C([0,T],L^{2^-})\\)</span>. The energy becomes finite and decreasing for positive times, with vorticity concentrated in a ring that thickens and moves in the direction of the symmetry axis. With our approach, there is no need to mollify the initial data or to rescale the time variable. We overcome the singularity of the initial data by applying convex integration within the appropriate time-weighted space.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-025-00211-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Dissipative Euler Flows Originating from Circular Vortex Filaments\",\"authors\":\"Francisco Gancedo,&nbsp;Antonio Hidalgo-Torné,&nbsp;Francisco Mengual\",\"doi\":\"10.1007/s40818-025-00211-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove the first existence result of weak solutions to the 3D Euler equation with initial vorticity concentrated in a circle and velocity field in <span>\\\\(C([0,T],L^{2^-})\\\\)</span>. The energy becomes finite and decreasing for positive times, with vorticity concentrated in a ring that thickens and moves in the direction of the symmetry axis. With our approach, there is no need to mollify the initial data or to rescale the time variable. We overcome the singularity of the initial data by applying convex integration within the appropriate time-weighted space.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40818-025-00211-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-025-00211-5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-025-00211-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了初始涡度集中在圆内、速度场在圆内的三维欧拉方程弱解的第一存在性结果 \(C([0,T],L^{2^-})\). 能量变得有限,并在正时间内减少,涡量集中在一个变厚的环上,并沿对称轴方向移动。使用我们的方法,不需要缓和初始数据或重新调整时间变量。我们通过在适当的时间加权空间内应用凸积分克服了初始数据的奇异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissipative Euler Flows Originating from Circular Vortex Filaments

In this paper, we prove the first existence result of weak solutions to the 3D Euler equation with initial vorticity concentrated in a circle and velocity field in \(C([0,T],L^{2^-})\). The energy becomes finite and decreasing for positive times, with vorticity concentrated in a ring that thickens and moves in the direction of the symmetry axis. With our approach, there is no need to mollify the initial data or to rescale the time variable. We overcome the singularity of the initial data by applying convex integration within the appropriate time-weighted space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信