广义黑森商方程的内部\(C^2\)估计

IF 2.6 1区 数学 Q1 MATHEMATICS
Siyuan Lu
{"title":"广义黑森商方程的内部\\(C^2\\)估计","authors":"Siyuan Lu","doi":"10.1007/s40818-025-00215-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the interior <span>\\(C^2\\)</span> regularity problem for the Hessian quotient equation <span>\\(\\left(\\frac{\\sigma_n}{\\sigma_k}\\right)(D^2u)=f\\)</span>. We give a complete answer to this longstanding problem: for <span>\\(k=n-1,n-2\\)</span>, we establish an interior <span>\\(C^2\\)</span> estimate; for <span>\\(k\\leq n-3\\)</span>, we show that interior <span>\\(C^2\\)</span> estimate fails by finding a singular solution.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interior \\\\(C^2\\\\) Estimate for Hessian Quotient Equation in General Dimension\",\"authors\":\"Siyuan Lu\",\"doi\":\"10.1007/s40818-025-00215-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the interior <span>\\\\(C^2\\\\)</span> regularity problem for the Hessian quotient equation <span>\\\\(\\\\left(\\\\frac{\\\\sigma_n}{\\\\sigma_k}\\\\right)(D^2u)=f\\\\)</span>. We give a complete answer to this longstanding problem: for <span>\\\\(k=n-1,n-2\\\\)</span>, we establish an interior <span>\\\\(C^2\\\\)</span> estimate; for <span>\\\\(k\\\\leq n-3\\\\)</span>, we show that interior <span>\\\\(C^2\\\\)</span> estimate fails by finding a singular solution.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-025-00215-1\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-025-00215-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Hessian商方程\(\left(\frac{\sigma_n}{\sigma_k}\right)(D^2u)=f\)的内部\(C^2\)正则性问题。我们对这个长期存在的问题给出了一个完整的答案:对于\(k=n-1,n-2\),我们建立了一个内部\(C^2\)估计;对于\(k\leq n-3\),我们通过寻找奇异解来证明内部\(C^2\)估计失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interior \(C^2\) Estimate for Hessian Quotient Equation in General Dimension

In this paper, we study the interior \(C^2\) regularity problem for the Hessian quotient equation \(\left(\frac{\sigma_n}{\sigma_k}\right)(D^2u)=f\). We give a complete answer to this longstanding problem: for \(k=n-1,n-2\), we establish an interior \(C^2\) estimate; for \(k\leq n-3\), we show that interior \(C^2\) estimate fails by finding a singular solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信